Branches of stable three-tori using Hamiltonian methods in Hopf bifurcation on a rhombic lattice

被引:7
作者
Kirk, V
Marsden, JE
Silber, M
机构
[1] CALTECH,PASADENA,CA 91125
[2] NORTHWESTERN UNIV,DEPT ENGN SCI & APPL MATH,EVANSTON,IL 60208
来源
DYNAMICS AND STABILITY OF SYSTEMS | 1996年 / 11卷 / 04期
关键词
D O I
10.1080/02681119608806228
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper uses Hamiltonian methods to find and determine the stability of some new solution branches for art equivariant Hopf bifurcation on C-4. The normal form has a symmetry group given by the semi-direct product of D-2 with T-2 x S-1. The Hamiltonian part of the normal form is completely integrable and may be analyzed using a system of invariants. The idea of the paper is to perturb relative equilibria in this singular Hamiltonian limit to obtain new three-frequency solutions to the full normal form for parameter values near the Hamiltonian limit. The solutions obtained have fully broken symmetry, that is, they do not lie in fixed point subspaces. The methods developed in this paper allow one to determine the stability of this new branch of solutions. An ex:ample shows that the branch of three-tori can be stable.
引用
收藏
页码:267 / 302
页数:36
相关论文
共 31 条
[1]  
[Anonymous], LECT NOTES PHYS
[2]   The Euler-Poincare equations and double bracket dissipation [J].
Bloch, A ;
Krishnaprasad, PS ;
Marsden, JE ;
Ratiu, TS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :1-42
[3]   DISSIPATION INDUCED INSTABILITIES [J].
BLOCH, AM ;
KRISHNAPRASAD, PS ;
MARSDEN, JE ;
RATIU, TS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :37-90
[4]   FORCED REFLECTIONAL SYMMETRY-BREAKING OF AN O(2)-SYMMETRICAL HOMOCLINIC CYCLE [J].
CHOSSAT, P .
NONLINEARITY, 1993, 6 (05) :723-731
[5]   ON AVERAGING, REDUCTION, AND SYMMETRY IN HAMILTONIAN-SYSTEMS [J].
CHURCHILL, RC ;
KUMMER, M ;
ROD, DL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (03) :359-414
[6]   PATTERN SELECTION IN 3-DIMENSIONAL MAGNETOCONVECTION [J].
CLUNE, T ;
KNOBLOCH, E .
PHYSICA D, 1994, 74 (1-2) :151-176
[7]   REDUCTION OF THE SEMISIMPLE 1-1 RESONANCE [J].
CUSHMAN, R ;
ROD, DL .
PHYSICA D, 1982, 6 (01) :105-112
[8]   MULTIPLE LIE-POISSON STRUCTURES, REDUCTIONS, AND GEOMETRIC PHASES FOR THE MAXWELL-BLOCH TRAVELING-WAVE EQUATIONS [J].
DAVID, D ;
HOLM, DD .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (02) :241-262
[9]   HAMILTONIAN CHAOS IN NONLINEAR OPTICAL POLARIZATION DYNAMICS [J].
DAVID, D ;
HOLM, DD ;
TRATNIK, MV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 187 (06) :281-367
[10]   TRANSVERSE PATTERNS IN LASERS [J].
FENG, Q ;
MOLONEY, JV ;
NEWELL, AC .
PHYSICAL REVIEW A, 1994, 50 (05) :R3601-R3604