Despite recent advances in circadian biology, detailed understanding of how a biological pacemaker system is assembled, maintained, and regulated continues to be a significant challenge. We have assembled and characterized a first-generation, regulatable, self-sustained clock-like expression system based on key components of the mammalian circadian clock. The molecular setup of the clock-like oscillator was reduced to the core set of positive and negative elements common to all known circadian pacemakers. Sophisticated tetracycline-responsive multi-cistronic expression integrated with forefront lentiviral transduction tools enabled autoregulated reporter transgene expression in a human cell line. We characterized transgene expression kinetics of an artificial oscillator and showed that its expression profiles could be modulated by a serum shock and administration of regulating tetracycline antibiotics. Design of a generic mammalian clock-like expression system will offer novel opportunities to study circadian biology and may provide a unique tool for rhythmic expression of desired transgenes fostering advances in biopharmaceutical manufacturing, gene therapy, and tissue engineering. (C) 2004 Wiley Periodicals, Inc.