The homologous tryptophan critical for cytochrome c peroxidase function is not essential for ascorbate peroxidase activity

被引:38
作者
Pappa, H
Patterson, WR
Poulos, TL
机构
[1] UNIV CALIF IRVINE,DEPT MOL BIOL & BIOCHEM,IRVINE,CA 92717
[2] UNIV CALIF IRVINE,DEPT PHYSIOL & BIOPHYS,IRVINE,CA 92717
来源
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY | 1996年 / 1卷 / 01期
关键词
peroxidase; tryptophan radical; ascorbate peroxidase;
D O I
10.1007/s007750050023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The crystal structures of ascorbate peroxidase (APX) and cytochrome c peroxidase (CCP) show that the active site structures are nearly identical. Both enzymes contain a His-Asp-Trp catalytic triad in the proximal pocket. The proximal Asp residue hydrogen bonds with both the His proximal heme ligand and the indole ring nitrogen of the proximal Trp. The Trp is stacked parallel to and in contact with the proximal His ligand. This Trp is known to be the site of free radical formation in CCP compound I and also is essential for activity. However, APX forms a porphyrin radical and not a Trp-centered radical, even though the His-Asp-Trp triad structure is the same in both peroxidases. We found that conversion of the proximal Trp to Phe has no effect on APX enzyme activity and that the mutant crystal structure shows that changes in the structure are confined to the site of mutation. This indicates that the paths of electron transfer in CCP and APX are distinctly different. The Trp-to-Phe mutant does alter the stability of the APX compound I porphyrin radical, by a factor of two. Electrostatic calculations and modeling studies show that a potassium cation located about 8 Angstrom from the proximal Trp in APX, but absent in CCP, makes a significant contribution to the stability of a cation Trp radical. This underscores the importance of long-range electrostatic effects in enzyme catalyzed reactions.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 27 条