Thermodynamical approach for small-scale parametrization in 2D turbulence

被引:34
作者
Chavanis, PH
Sommeria, J
机构
[1] Laboratoire de Physique (CNRS URA 1325), Ecole Normale Supérieure de Lyon, Lyon cedex
关键词
D O I
10.1103/PhysRevLett.78.3302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a model of turbulent viscosity which preserves all the known conservation laws of the two-dimensional incompressible Euler equation and is invariant by changes of reference frames. This model is derived by a systematic procedure, using a principle of maximum entropy production.
引用
收藏
页码:3302 / 3305
页数:4
相关论文
共 10 条
[1]  
BASDEVANT C, 1983, J MEC THEOR APPL, P243
[2]   Statistical mechanics of two-dimensional vortices and collisionless stellar systems [J].
Chavanis, PH ;
Sommeria, J ;
Robert, R .
ASTROPHYSICAL JOURNAL, 1996, 471 (01) :385-399
[3]  
CHAVANIS PH, IN PRESS
[4]  
HOLLOWAY G, 1992, J PHYS OCEANOGR, V22, P1033, DOI 10.1175/1520-0485(1992)022<1033:RTSFLS>2.0.CO
[5]  
2
[6]  
KAZANTSEV E, IN PRESS
[7]   STATISTICAL-MECHANICS OF EULER EQUATIONS IN 2 DIMENSIONS [J].
MILLER, J .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2137-2140
[8]   The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach [J].
Robert, R ;
Rosier, C .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (3-4) :481-515
[9]   RELAXATION TOWARDS A STATISTICAL EQUILIBRIUM STATE IN 2-DIMENSIONAL PERFECT FLUID-DYNAMICS [J].
ROBERT, R ;
SOMMERIA, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2776-2779
[10]   STATISTICAL EQUILIBRIUM STATES FOR 2-DIMENSIONAL FLOWS [J].
ROBERT, R ;
SOMMERIA, J .
JOURNAL OF FLUID MECHANICS, 1991, 229 :291-310