Uncovering deterministic causal structures: a Boolean approach

被引:29
作者
Baumgartner, Michael [1 ]
机构
[1] Univ Bern, Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Causation; Causal reasoning; Discovery algorithms; Deterministic structures;
D O I
10.1007/s11229-008-9348-0
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
While standard procedures of causal reasoning as procedures analyzing causal Bayesian networks are custom-built for (non-deterministic) probabilistic structures, this paper introduces a Boolean procedure that uncovers deterministic causal structures. Contrary to existing Boolean methodologies, the procedure advanced here successfully analyzes structures of arbitrary complexity. It roughly involves three parts: first, deterministic dependencies are identified in the data; second, these dependencies are suitably minimalized in order to eliminate redundancies; and third, one or-in case of ambiguities-more than one causal structure is assigned to the minimalized deterministic dependencies.
引用
收藏
页码:71 / 96
页数:26
相关论文
共 22 条
[1]  
Baumgartner M., 2004, KAUSALITAT KAUSALES
[2]  
BAUMGARTNER M, 2008, CASUAL CHAIN PROBLEM
[3]  
BAUMGARTNER M, 2006, THESIS U BERN BERN
[4]  
BAUMGARTNER M, 2008, PHILOSOPHIA
[5]   CAUSAL ASYMMETRY [J].
EHRING, D .
JOURNAL OF PHILOSOPHY, 1982, 79 (12) :761-774
[6]  
Glymour C., 1997, CAUSALITY CRISIS, P201
[7]  
GLYMOUR C, 2007, CAUSAL LEARNING PSYC, P231
[8]  
Grasshoff G., 2001, CURRENT ISSUES CAUSA, P85
[9]  
Hausman Daniel M., 1998, Causal Asymmetries, DOI 10.1017/CBO9780511663710
[10]  
Lemmon EJ., 1965, Beginning logic