Fabrication and characterization of mesoporous Co3O4 core/mesoporous silica shell nanocomposites

被引:57
作者
Meng, Yongde [1 ]
Chen, Dairong [1 ]
Jiao, Xiuling [1 ]
机构
[1] Shandong Univ, Dept Chem, Jinan 250100, Peoples R China
关键词
D O I
10.1021/jp0626465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A mesoporous Co3O4 core/mesoporous silica shell composite with a variable shell thickness of 10-35 nm was fabricated by depositing silica on Co3O4 superlatticed particles. The Brunauer-Emmett-Teller (BET) surface area of the composite with a shell thickness of ca. 2.0 nm was 238.6 m(2)/g, which varied with the shell thickness, and the most frequent pore size of the shell was ca. 2.0 nm. After the shell was eroded with hydrofluoric acid, mesoporous Co3O4 particles with a pore size of ca. 8.7 nm could be obtained, whose BET surface area was 86.4 m(2)/g. It is proposed that in the formation of the composite the electropositive cetyltrimethylammonium bromide (CTAB) micelles were first adsorbed on the electronegative Co3O4 particle surface, which directed the formation of the mesoporous silica on the Co3O4 particle surface. Electrochemical measurements showed that the core/shell composites exhibited a higher discharge capacity compared with that of the bare Co3O4 particles.
引用
收藏
页码:15212 / 15217
页数:6
相关论文
共 54 条
[1]   X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties [J].
Audebrand, N ;
Auffredic, JP ;
Louer, D .
CHEMISTRY OF MATERIALS, 1998, 10 (09) :2450-2461
[2]   Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition [J].
Bahlawane, N ;
Rivera, EF ;
Kohse-Höinghaus, K ;
Brechling, A ;
Kleineberg, U .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 53 (04) :245-255
[3]   Core-shell zeolite microcomposites [J].
Bouizi, Y ;
Diaz, I ;
Rouleau, L ;
Valtchev, VP .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :1955-1960
[4]  
Buchel G, 1998, ADV MATER, V10, P1036, DOI 10.1002/(SICI)1521-4095(199809)10:13<1036::AID-ADMA1036>3.0.CO
[5]  
2-Z
[6]   CERAMIC THIN-FILM FORMATION ON FUNCTIONALIZED INTERFACES THROUGH BIOMIMETIC PROCESSING [J].
BUNKER, BC ;
RIEKE, PC ;
TARASEVICH, BJ ;
CAMPBELL, AA ;
FRYXELL, GE ;
GRAFF, GL ;
SONG, L ;
LIU, J ;
VIRDEN, JW ;
MCVAY, GL .
SCIENCE, 1994, 264 (5155) :48-55
[7]   From microporous to mesoporous molecular sieve materials and their use in catalysis [J].
Corma, A .
CHEMICAL REVIEWS, 1997, 97 (06) :2373-2419
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]   Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe [J].
Danek, M ;
Jensen, KF ;
Murray, CB ;
Bawendi, MG .
CHEMISTRY OF MATERIALS, 1996, 8 (01) :173-180
[10]   Effect of ZnO doping on surface and catalytic properties of NiO and Co3O4 solids [J].
El-Shobaky, GA ;
Ghozza, AM .
MATERIALS LETTERS, 2004, 58 (05) :699-705