On the optimality of the backward greedy algorithm for the subset selection problem

被引:68
作者
Couvreur, C [1 ]
Bresler, Y
机构
[1] Fac Polytech Mons, Dept Phys, B-7000 Mons, Belgium
[2] Lernout & Hauspie Speech Prod, B-1780 Wemmel, Belgium
[3] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
subset selection; sparse least-squares solutions; backward greedy algorithm; NP-hard;
D O I
10.1137/S0895479898332928
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following linear inverse problem is considered: Given a full column rank m x n data matrix A and a length m observation vector b, find the best least-squares solution to Ax = b with at most r <n nonzero components. The backward greedy algorithm computes a sparse solution to Ax = b by removing greedily columns from A until r columns are left. A simple implementation based on a QR downdating scheme using Givens rotations is described. The backward greedy algorithm is shown to be optimal for the subset selection problem in the sense that it selects the "correct" subset of columns from A if the perturbation of the data vector b is small enough. The results generalize to any other norm of the residual.
引用
收藏
页码:797 / 808
页数:12
相关论文
共 11 条
[1]  
BJORCK A, 1994, SIAM J MATRIX ANAL A, V15, P549
[2]  
COUVREUR C, 1998, UNPUB OPTIMAL DECOMP
[3]  
COUVREUR C, 1996, P ICASSP, P2519
[5]   REGRESSIONS BY LEAPS AND BOUNDS [J].
FURNIVAL, GM ;
WILSON, RW .
TECHNOMETRICS, 1974, 16 (04) :499-511
[6]  
Golub G. H., 2013, Matrix Computations
[7]  
Harikumar G, 1996, INT CONF ACOUST SPEE, P1331, DOI 10.1109/ICASSP.1996.543672
[8]  
Miller AJ, 1990, SUBSET SELECTION REG
[9]  
NAFIE M, 1996, P ICASSP IEEE PISC N
[10]   SPARSE APPROXIMATE SOLUTIONS TO LINEAR-SYSTEMS [J].
NATARAJAN, BK .
SIAM JOURNAL ON COMPUTING, 1995, 24 (02) :227-234