Biological routes to metal alloy ferromagnetic nanostructures

被引:170
作者
Reiss, BD
Mao, CB
Solis, DJ
Ryan, KS
Thomson, T
Belcher, AM [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Div Biol Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] Hitachi San Jose Res Ctr, San Jose, CA 95120 USA
[5] Univ Texas, Inst Mol & Cellular Biol, Dept Chem & Biochem, Austin, TX 78712 USA
关键词
D O I
10.1021/nl049825n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic nanoparticles have potential applications in high-density memory devices, but their complicated synthesis often requires high temperatures, expensive reagents, and postsynthesis annealing to achieve the desired magnetic properties. Current synthetic methods for magnetic nanoparticles often require post-synthetic modifications, suggesting that the practical application of magnetic nanoparticles will depend on the development of alternative synthetic strategies. We report a biological template to directly grow magnetic nanoparticles of desired material composition and phase under ambient conditions. A phage display methodology was adapted to identify peptide sequences that both specifically bind to the ferromagnetic L1(0) phase of FePt and control the crystallization of FePt nanoparticles using a modified arrested precipitation technique. TEM, electron diffraction, STEM, and X-ray diffraction all indicate these nanoparticles are composed of an FePt alloy with some degree of chemical ordering, and SQUID analysis shows these nanostructures are ferromagnetic at room temperature, possessing coercivities up to 1000 Oe.
引用
收藏
页码:1127 / 1132
页数:6
相关论文
共 37 条
[1]   Control of crystal phase switching and orientation by soluble mollusc-shell proteins [J].
Belcher, AM ;
Wu, XH ;
Christensen, RJ ;
Hansma, PK ;
Stucky, GD ;
Morse, DE .
NATURE, 1996, 381 (6577) :56-58
[2]   A genetic analysis of crystal growth [J].
Brown, S ;
Sarikaya, M ;
Johnson, E .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (03) :725-735
[3]   Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals [J].
Dai, ZR ;
Sun, SH ;
Wang, ZL .
NANO LETTERS, 2001, 1 (08) :443-447
[4]   BIOSYNTHESIS OF CADMIUM-SULFIDE QUANTUM SEMICONDUCTOR CRYSTALLITES [J].
DAMERON, CT ;
REESE, RN ;
MEHRA, RK ;
KORTAN, AR ;
CARROLL, PJ ;
STEIGERWALD, ML ;
BRUS, LE ;
WINGE, DR .
NATURE, 1989, 338 (6216) :596-597
[5]   Host-guest encapsulation of materials by assembled virus protein cages [J].
Douglas, T ;
Young, M .
NATURE, 1998, 393 (6681) :152-155
[6]   SYNTHESIS AND STRUCTURE OF AN IRON(III) SULFIDE-FERRITIN BIOINORGANIC NANOCOMPOSITE [J].
DOUGLAS, T ;
DICKSON, DPE ;
BETTERIDGE, S ;
CHARNOCK, J ;
GARNER, CD ;
MANN, S .
SCIENCE, 1995, 269 (5220) :54-57
[7]   Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin [J].
Douglas, T ;
Stark, VT .
INORGANIC CHEMISTRY, 2000, 39 (08) :1828-1830
[8]  
DUJARDIN E, 2002, NANO LETT
[9]   Control of aragonite or calcite polymorphism by mollusk shell macromolecules [J].
Falini, G ;
Albeck, S ;
Weiner, S ;
Addadi, L .
SCIENCE, 1996, 271 (5245) :67-69
[10]   Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly [J].
Flynn, CE ;
Mao, CB ;
Hayhurst, A ;
Williams, JL ;
Georgiou, G ;
Iverson, B ;
Belcher, AM .
JOURNAL OF MATERIALS CHEMISTRY, 2003, 13 (10) :2414-2421