Why multigrid methods are so efficient

被引:42
作者
Yavneh, Irad [1 ]
机构
[1] Technion Israel Inst Technol, Fac Comp Sci, IL-32000 Haifa, Israel
关键词
D O I
10.1109/MCSE.2006.125
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Originally introduced as a way to numerically solve elliptic boundary-value problems, multigrid methods, and their various multiscale descendants, have since been developed and applied to various problems in many disciplines. This introductory article provides the basic concepts and methods of analysis and outlines some of the difficulties of developing efficient multigrid algorithms.
引用
收藏
页码:12 / 22
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1982, MULTIGRID METHODS
[2]  
BAKHVALOV N. S., 1966, USSR COMP MATH MATH, V6, P101, DOI [DOI 10.1016/0041-5553(66)90118-2, 10.1016/0041-5553(66)90118-2]
[3]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[4]  
BRANDT A, 1985, MULTIGRID GUIDE APPL, V85
[5]  
Brandt A, 1976, 6026 RC IBM TJ WATS
[6]  
BRANDT A, 1973, LECTURE NOTES PHYSIC, V18, P82
[7]  
Briggs W.L., 2000, A Multigrid Tutorial
[8]  
Fedorenko, 1962, COMP MATH MATH PHYS+, V1, P1092, DOI DOI 10.1016/0041-5553(62)90031-9
[9]  
Fedorenko R. P., 1964, USSR COMPUTAT MATH P, V4, P227, DOI [10.1016/0041-5553(64)90253-8, 10.1016%2F0041-5553%2864%2990253-8, DOI 10.1016/0041-5553(64)90253-8]
[10]  
Hackbusch W., 1985, MULTIGRID METHODS AP, DOI 10.1007/978-3-662-02427-0