Many-core algorithms for statistical phylogenetics

被引:313
作者
Suchard, Marc A. [1 ,2 ,3 ]
Rambaut, Andrew [4 ]
机构
[1] Univ Calif Los Angeles, Dept Biomath, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[4] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland
基金
美国国家卫生研究院;
关键词
CODON-SUBSTITUTION MODELS; MAXIMUM-LIKELIHOOD; NUCLEOTIDE SUBSTITUTION; DNA-SEQUENCES; RECONSTRUCTION; INFERENCE; TREES; GENES; RATES;
D O I
10.1093/bioinformatics/btp244
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Statistical phylogenetics is computationally intensive, resulting in considerable attention meted on techniques for parallelization. Codon-based models allow for independent rates of synonymous and replacement substitutions and have the potential to more adequately model the process of protein-coding sequence evolution with a resulting increase in phylogenetic accuracy. Unfortunately, due to the high number of codon states, computational burden has largely thwarted phylogenetic reconstruction under codon models, particularly at the genomic-scale. Here, we describe novel algorithms and methods for evaluating phylogenies under arbitrary molecular evolutionary models on graphics processing units (GPUs), making use of the large number of processing cores to efficiently parallelize calculations even for large state-size models. Results: We implement the approach in an existing Bayesian framework and apply the algorithms to estimating the phylogeny of 62 complete mitochondrial genomes of carnivores under a 60-state codon model. We see a near 90-fold speed increase over an optimized CPU-based computation and a > 140-fold increase over the currently available implementation, making this the first practical use of codon models for phylogenetic inference over whole mitochondrial or microorganism genomes.
引用
收藏
页码:1370 / 1376
页数:7
相关论文
共 32 条
[1]   Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference [J].
Altekar, G ;
Dwarkadas, S ;
Huelsenbeck, JP ;
Ronquist, F .
BIOINFORMATICS, 2004, 20 (03) :407-415
[2]  
[Anonymous], 2008, NVIDIA CUDA COMP UN
[3]   Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) [J].
Bininda-Emonds, ORP ;
Gittleman, JL ;
Purvis, A .
BIOLOGICAL REVIEWS, 1999, 74 (02) :143-175
[4]  
Charalambous M, 2005, LECT NOTES COMPUT SC, V3746, P415
[5]   PUMMA - PARALLEL UNIVERSAL MATRIX MULTIPLICATION ALGORITHMS ON DISTRIBUTED-MEMORY CONCURRENT COMPUTERS [J].
CHOI, JY ;
DONGARRA, JJ ;
WALKER, DW .
CONCURRENCY-PRACTICE AND EXPERIENCE, 1994, 6 (07) :543-570
[6]   A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes [J].
Delisle, I ;
Strobeck, C .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2005, 37 (01) :192-201
[7]   Relaxed phylogenetics and dating with confidence [J].
Drummond, Alexei J. ;
Ho, Simon Y. W. ;
Phillips, Matthew J. ;
Rambaut, Andrew .
PLOS BIOLOGY, 2006, 4 (05) :699-710
[8]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[9]  
FENG X, 2007, PAR DISTR PROC S IPD
[10]   Parallel algorithms for Bayesian phylogenetic inference [J].
Feng, XZ ;
Buell, DA ;
Rose, JR ;
Waddell, PJ .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) :707-718