The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src

被引:151
作者
Yamana, Norikazu
Arakawa, Yoshiki
Nishino, Tomohiro
Kurokawa, Kazuo
Tanji, Masahiro
Itoh, Reina E.
Monypenny, James
Ishizaki, Toshimasa
Bito, Haruhiko
Nozaki, Kazuhiko
Hashimoto, Nobuo
Matsuda, Michiyuki
Narumiya, Shuh [1 ]
机构
[1] Kyoto Univ, Fac Med, Dept Pharmacol, Kyoto 6068501, Japan
[2] Kyoto Univ, Fac Med, Dept Neurosurg, Kyoto 6068501, Japan
[3] Osaka Univ, Dept Signal Transduct, Res Inst Microbial Dis, Suita, Osaka 5650871, Japan
关键词
D O I
10.1128/MCB.00283-06
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Directed cell migration requires cell polarization and adhesion turnover, in which the actin cytoskeleton and microtubules work critically. The Rho GTPases induce specific types of actin cytoskeleton and regulate microtubule dynamics. In migrating cells, Cdc42 regulates cell polarity and Rac works in membrane protrusion. However, the role of Rho in migration is little known. Rho acts on two major effectors, ROCK and mDia1, among which mDia1 produces straight actin filaments and aligns microtubules. Here we depleted mDial by RNA interference and found that mDial depletion impaired directed migration of rat C6 glioma cells by inhibiting both cell polarization and adhesion turnover. Ape and active Cdc42, which work together for cell polarization, localized in the front of migrating cells, while active c-Src, which regulates adhesion turnover, localized in focal adhesions. mDia1 depletion impaired localization of these molecules at their respective sites. Conversely, expression of active mDia1 facilitated microtubule-dependent accumulation of Apc and active Cdc42 in the polar ends of the cells and actin-dependent recruitment of c-Src in adhesions. Thus, the Rho-mDia1 pathway regulates polarization and adhesion turnover by aligning microtubules and actin filaments and delivering Apc/Cdc42 and c-Src to their respective sites of action.
引用
收藏
页码:6844 / 6858
页数:15
相关论文
共 53 条
[1]   A role for Cdc42 in macrophage chemotaxis [J].
Allen, WE ;
Zicha, D ;
Ridley, AJ ;
Jones, GE .
JOURNAL OF CELL BIOLOGY, 1998, 141 (05) :1147-1157
[2]   Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurons [J].
Arakawa, Y ;
Bito, H ;
Furuyashiki, T ;
Tsuji, T ;
Takemoto-Kimura, S ;
Kimura, K ;
Nozaki, K ;
Hashimoto, N ;
Narumiya, S .
JOURNAL OF CELL BIOLOGY, 2003, 161 (02) :381-391
[3]   Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors [J].
Bretscher, A .
JOURNAL OF CELL BIOLOGY, 2003, 160 (06) :811-816
[4]   Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid [J].
Cook, TA ;
Nagasaki, T ;
Gundersen, GG .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :175-185
[5]   Cell motility - Braking WAVEs [J].
Cory, GOC ;
Ridley, AJ .
NATURE, 2002, 418 (6899) :732-733
[6]   The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation [J].
Cowan-Jacob, SW ;
Fendrich, G ;
Manley, PW ;
Jahnke, W ;
Fabbro, D ;
Liebetanz, J ;
Meyer, T .
STRUCTURE, 2005, 13 (06) :861-871
[7]  
DILLON ST, 1995, METHOD ENZYMOL, V256, P174
[8]   Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity [J].
Etienne-Manneville, S ;
Hall, A .
NATURE, 2003, 421 (6924) :753-756
[9]   Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ [J].
Etienne-Manneville, S ;
Hall, A .
CELL, 2001, 106 (04) :489-498
[10]   The SH3 domain directs acto-myosin-dependent targeting of v-Src to focal adhesions via phosphatidylinositol 3-kinase [J].
Fincham, VJ ;
Brunton, VG ;
Frame, MC .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (17) :6518-6536