Alternative approach to the derivation of dispersion relations for optical constants

被引:11
作者
King, Frederick W. [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 33期
关键词
D O I
10.1088/0305-4470/39/33/012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The derivation of dispersion relations for linear optical constants is considered starting from the representation of an optical property as a Herglotz function. One form of the Kramers-Kronig relations is determined directly and the second is obtained using elementary properties of the Hilbert transform. Application to the complex refractive index is considered.
引用
收藏
页码:10427 / 10435
页数:9
相关论文
共 49 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
[Anonymous], CONT PROBLEMS MATH P
[3]  
[Anonymous], 1999, DISPERSION COMPLEX A
[4]  
[Anonymous], SOME QUESTIONS THEOR
[5]  
Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
[6]   DISPERSION RELATIONS FOR NONLINEAR RESPONSE [J].
CASPERS, WJ .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (5A) :1249-&
[7]  
Cauer W., 1932, B AM MATH SOC, V38, P713
[8]   Analytic continuation, singular-value expansions, and Kramers-Kronig analysis [J].
Dienstfrey, A ;
Greengard, L .
INVERSE PROBLEMS, 2001, 17 (05) :1307-1320
[9]  
Herglotz G., 1911, BER VERHANDL SACHS A, V63, P501
[10]   FOURIER-SERIES METHOD FOR NUMERICAL KRAMERS-KRONIG ANALYSIS [J].
JOHNSON, DW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (04) :490-495