Megakaryocytes express functional Aurora-B kinase in endomitosis

被引:47
作者
Geddis, AE
Kaushansky, K
机构
[1] Univ Calif San Diego, Div Pediat Hematol Oncol, Dept Pediat, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Div Pediat Hematol Oncol, Dept Med, La Jolla, CA 92093 USA
关键词
D O I
10.1182/blood-2004-02-0419
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Endomitosis (EnM) in megakaryocytes (MKs) is characterized by abortion of mitosis in late anaphase and failure of cytokinesis; subsequent reinitiation of DNA synthesis results in polyploidy. Ablation of chromosomal passenger proteins including Aurora-B kinase causes defects in late anaphase and cytokinesis in diploid cells; thus one hypothesis is that the expression or function of these proteins in polyploid MKs is abnormal. It has been reported that Aurora-B kinase mRNA is decreased in polyploid megakaryocytic cells, suggesting that deficiency of Aurora-B kinase is responsible for EnM. We examined the localization of Aurora-B kinase and additional members of the chromosomal passenger protein and aurora kinase families in MKs. We found that in EnM MKs (1) Aurora-B kinase is present and appropriately localized to centromeres in early EnM; (2) in low-ploidy human MKs, centromeric localization of survivin and inner centromere protein (INCENP) can also be demonstrated; (3) the function of Aurora-B kinase, as measured by Ser10 phosphorylation of histone H3, is intact; and (4) aurora-A kinase localizes appropriately to centrosomes in EnM. These results suggest that EnM MKs appropriately express functional Aurora-B kinase and related proteins in early anaphase, making a simple deficiency of this protein an unlikely explanation for polyploidy in this cell type. (C) 2004 by The American Society of Hematology.
引用
收藏
页码:1017 / 1024
页数:8
相关论文
共 63 条
[1]   INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow [J].
Adams, RR ;
Wheatley, SP ;
Gouldsworthy, AM ;
Kandels-Lewis, SE ;
Carmena, M ;
Smythe, C ;
Gerloff, DL ;
Earnshaw, WD .
CURRENT BIOLOGY, 2000, 10 (17) :1075-1078
[2]   Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation [J].
Adams, RR ;
Maiato, H ;
Earnshaw, WC ;
Carmena, M .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :865-879
[3]   Chromosomal passengers and the (aurora) ABCs of mitosis [J].
Adams, RR ;
Carmena, M ;
Earnshaw, WC .
TRENDS IN CELL BIOLOGY, 2001, 11 (02) :49-54
[4]   Role of p2lCiP1/Waf1 in cell-cycle exit of endomitotic megakaryocytes [J].
Baccini, V ;
Roy, L ;
Vitrat, N ;
Chagraoui, H ;
Sabri, S ;
Le Couedic, JP ;
Debili, N ;
Wendling, F ;
Vainchenker, W .
BLOOD, 2001, 98 (12) :3274-3282
[5]   The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast [J].
Biggins, S ;
Severin, FF ;
Bhalla, N ;
Sassoon, I ;
Hyman, AA ;
Murray, AW .
GENES & DEVELOPMENT, 1999, 13 (05) :532-544
[6]   Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and in a complex inase activity is phosphorylation [J].
Bolton, MA ;
Lan, WJ ;
Powers, SE ;
McCleland, ML ;
Kuang, J ;
Stukenberg, PT .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (09) :3064-3077
[7]   Kinetics of endomitosis in primary murine megakaryocytes [J].
Carow, CE ;
Fox, NE ;
Kaushansky, K .
JOURNAL OF CELLULAR PHYSIOLOGY, 2001, 188 (03) :291-303
[8]   Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling [J].
Cleveland, DW ;
Mao, YH ;
Sullivan, KF .
CELL, 2003, 112 (04) :407-421
[9]   THE INNER CENTROMERE PROTEIN (INCENP) ANTIGENS - MOVEMENT FROM INNER CENTROMERE TO MIDBODY DURING MITOSIS [J].
COOKE, CA ;
HECK, MMS ;
EARNSHAW, WC .
JOURNAL OF CELL BIOLOGY, 1987, 105 (05) :2053-2067
[10]   Mitotic phosphorylation of histone H3: Spatio-temporal regulation by mammalian aurora kinases [J].
Crosio, C ;
Fimia, GM ;
Loury, R ;
Kimura, M ;
Okano, Y ;
Zhou, HY ;
Sen, S ;
Allis, CD ;
Sassone-Corsi, P .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (03) :874-885