The renal type H+/peptide symporter PEPT2:: structure-affinity relationships

被引:74
作者
Biegel, A.
Knuetter, I.
Hartrodt, B.
Gebauer, S.
Theis, S.
Luckner, P.
Kottra, G.
Rastetter, M.
Zebisch, K.
Thondorf, I.
Daniel, H.
Neubert, K.
Brandsch, M.
机构
[1] Univ Halle Wittenberg, Membrane Transport Grp, Biozentrum, D-06120 Halle, Germany
[2] Univ Halle Wittenberg, Inst Biochem, Dept Biochem Biotechnol, D-06120 Halle, Germany
[3] Tech Univ Munich, Mol Nutr Unit, Inst Nutr Sci, D-8050 Freising Weihenstephan, Germany
关键词
PEPT1; PEPT2; peptide transport; dipeptides; tripeptides; beta-lactam antibiotics; peptidomimetics; drugs; drug-delivery;
D O I
10.1007/s00726-006-0331-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The H+x/peptide cotransporter PEPT2 is expressed in a variety of organs including kidney, lung, brain, mammary gland, and eye. PEPT2 substrates are di- and tripeptides as well as peptidomimetics, such as beta-lactam antibiotics. Due to the presence of PEPT2 at the bronchial epithelium, the aerosolic administration of peptide-like drugs might play a major role in future treatment of various pulmonary and systemic diseases. Moreover, PEPT2 has a significant influence on the in vivo disposition and half-life time of peptide-like drugs within the body, particularly in kidney and brain. PEPT2 is known to have similar but not identical structural requirements for substrate recognition and transport compared to PEPT1, its intestinal counterpart. In this review we compiled available affinity constants of 352 compounds, measured at different mammalian tissues and expression systems and compare the data whenever possible with those of PEPT1.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 106 条
  • [1] Renal assimilation of oligopeptides: Physiological mechanisms and metabolic importance
    Adibi, SA
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1997, 272 (05): : E723 - E736
  • [2] METABOLISM OF INTRAVENOUSLY ADMINISTERED DIPEPTIDES IN RATS - EFFECTS ON AMINO-ACID POOLS, GLUCOSE CONCENTRATION AND INSULIN AND GLUCAGON-SECRETION
    ADIBI, SA
    KRZYSIK, BA
    DRASH, AL
    [J]. CLINICAL SCIENCE AND MOLECULAR MEDICINE, 1977, 52 (02): : 193 - 204
  • [3] Akarawut W, 1998, J PHARMACOL EXP THER, V287, P684
  • [4] Electrophysiological analysis of the function of the mammalian renal peptide transporter expressed in Xenopus laevis oocytes
    Amasheh, S
    Wenzel, U
    Weber, WM
    Clauss, W
    Daniel, H
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (01): : 169 - 174
  • [5] RENAL TUBULAR TRANSPORT OF HYDROXYPROLINE PEPTIDES - EVIDENCE FOR REABSORPTION AND SECRETION
    BENOIT, FL
    WATTEN, RH
    [J]. METABOLISM-CLINICAL AND EXPERIMENTAL, 1968, 17 (01): : 20 - &
  • [6] Distribution of peptide transporter PEPT2 mRNA in the rat nervous system
    Berger, UV
    Hediger, MA
    [J]. ANATOMY AND EMBRYOLOGY, 1999, 199 (05): : 439 - 449
  • [7] Three-dimensional quantitative structure-activity relationship analyses of β-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1
    Biegel, A
    Gebauer, S
    Hartrodt, B
    Brandsch, M
    Neubert, K
    Thondorf, I
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (13) : 4410 - 4419
  • [8] Structural requirements for the substrates of the H+/peptide cotransporter PEPT2 determined by three-dimensional quantitative structure-activity relationship analysis
    Biegel, Annegret
    Gebauer, Sabine
    Brandsch, Matthias
    Neubert, Klaus
    Thondorf, Iris
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (14) : 4286 - 4296
  • [9] Yeast - a panacea for the structure-function analysis of membrane proteins?
    Bill, RM
    [J]. CURRENT GENETICS, 2001, 40 (03) : 157 - 171
  • [10] Bockman DE, 1997, INT J PANCREATOL, V22, P221