Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model

被引:28
作者
Ponte, RM
机构
[1] Atmosph. and Environ. Research, Inc., Cambridge, MA 02139
关键词
Earth's rotation; oceanic currents; oceanic models; oceans; sea-level;
D O I
10.1111/j.1365-246X.1997.tb05662.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Velocity and mass fields from a constant-density, near-global ocean model, driven with observed twice-daily surface wind stresses and atmospheric pressures for the period October 1992-September 1993, are used to calculate oceanic excitation functions for the length of day (LOD) and for polar motion (PM), and results are analysed as a function of the frequency band. Variable currents and mass redistributions are both important in determining oceanic excitation functions. For bands with periods longer than one month, wind-driven variability is the primary cause of oceanic excitation signals. At higher frequency bands, larger deviations from the inverted barometer response occur, and pressure-driven signals contribute more significantly to the variance in the excitation functions. Oceanic LOD excitation is generally small compared to that of the atmosphere, except for the 2-10 day band. At these scales, adding oceanic to atmospheric excitation series does not lead to better agreement with the observed LOD, although this result may be related to data quality issues. With regard to the excitation of PM, the ocean is in general as important as the atmosphere at most time scales. Combined oceanic and atmospheric excitation series compare visibly better with geodetic series than do atmospheric series alone, pointing to the ocean as a source of measurable signals in PM.
引用
收藏
页码:469 / 474
页数:6
相关论文
共 35 条
[1]   ATMOSPHERIC ANGULAR-MOMENTUM FLUCTUATIONS, LENGTH-OF-DAY CHANGES AND POLAR MOTION [J].
BARNES, RTH ;
HIDE, R ;
WHITE, AA ;
WILSON, CA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 387 (1792) :31-73
[2]   THE SEASONAL-VARIATION OF THE ANGULAR-MOMENTUM OF THE OCEANS [J].
BROSCHE, P ;
WUNSCH, J ;
FRISCHE, A ;
SUNDERMANN, J ;
MAIERREIMER, E ;
MIKOLAJEWICZ, U .
NATURWISSENSCHAFTEN, 1990, 77 (04) :185-186
[3]   The axial angular momentum balance of a global ocean general circulation model [J].
Bryan, FO .
DYNAMICS OF ATMOSPHERES AND OCEANS, 1997, 25 (03) :191-216
[4]  
BRYAN FO, 1995, EOS T AM GEOPHYS UN, V76, P61
[5]  
CHAO BF, 1993, GEOPHYS RES LETT, V20, P253, DOI 10.1029/93GL00130
[6]   ATMOSPHERIC EXCITATION OF THE EARTHS ANNUAL WOBBLE - 1980-1988 [J].
CHAO, BF ;
AU, AY .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B4) :6577-6582
[7]   A comparison between the TOPEX/POSEIDON data and a global ocean general circulation model during 1992-1993 [J].
Chao, Y ;
Fu, LL .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1995, 100 (C12) :24965-24976
[8]   THE EARTHS ANGULAR-MOMENTUM BUDGET ON SUBSEASONAL TIME SCALES [J].
DICKEY, JO ;
MARCUS, SL ;
STEPPE, JA ;
HIDE, R .
SCIENCE, 1992, 255 (5042) :321-325
[9]   CAUSES OF RAPID MOTIONS OF THE EARTHS POLE [J].
EUBANKS, TM ;
STEPPE, JA ;
DICKEY, JO ;
ROSEN, RD ;
SALSTEIN, DA .
NATURE, 1988, 334 (6178) :115-119
[10]   Relation between sea level and barometric pressure determined from altimeter data and model simulations [J].
Gaspar, P ;
Ponte, RM .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1997, 102 (C1) :961-971