Variational approach to parametric instabilities in inhomogeneous plasmas .1. Two model problems

被引:9
作者
Afeyan, BB [1 ]
Williams, EA [1 ]
机构
[1] LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94550 USA
关键词
D O I
10.1063/1.872504
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A variational formalism is introduced in the theory of three-wave parametric instabilities in inhomogeneous plasmas. This minimum pump strength principle (MPSP) is then applied to two model problems, the first being the Rosenbluth model equations [Phys. Rev. Lett. 29, 565 (1972)]. By choosing appropriate trial functions, the MPSP is used to solve for the complex eigenfrequency of the most unstable mode. The wave vector mismatch is assumed to be of the form kappa(x)=kappa((n))(0)x(n)/n!, where n is any positive integer. The results are compared to numerical solutions of the same eigenvalue problem. The second problem is the Liu, Rosenbluth, and White Raman sidescattering model [Phys. Fluids 17, 1211 (1974)], which is treated for any positive-integer power law density profile. The choice of trial functions, the role of symmetry, and various useful approximations are discussed.
引用
收藏
页码:3788 / 3802
页数:15
相关论文
共 44 条
[1]   STIMULATED RAMAN SIDESCATTERING WITH THE EFFECTS OF OBLIQUE-INCIDENCE [J].
AFEYAN, BB ;
WILLIAMS, EA .
PHYSICS OF FLUIDS, 1985, 28 (11) :3397-3408
[2]   UNIFIED THEORY OF STIMULATED RAMAN-SCATTERING AND 2-PLASMON DECAY IN INHOMOGENEOUS PLASMAS - HIGH-FREQUENCY HYBRID INSTABILITY [J].
AFEYAN, BB ;
WILLIAMS, EA .
PHYSICAL REVIEW LETTERS, 1995, 75 (23) :4218-4221
[3]  
AFEYAN BB, 1993, THESIS U ROCHESTER R
[4]  
[Anonymous], 1966, VARIATIONAL PRINCIPL
[5]  
BALDIS HA, 1991, HDB PLASMA PHYSICS, V3, P361
[6]   WKB METHOD FOR SYSTEMS OF INTEGRAL-EQUATIONS [J].
BERK, HL ;
PFIRSCH, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) :2054-2066
[7]   NEW STOKES LINE IN WKB THEORY [J].
BERK, HL ;
NEVINS, WM ;
ROBERTS, KV .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :988-1002
[8]  
BRIGGS RJ, 1964, RES MONOGR, V29, pCH2
[9]  
BYRON FW, 1969, MATH CLASSICAL QUANT
[10]  
CHAMBERS FW, 1975, THESIS MIT