Independent component approach to the analysis of EEG and MEG recordings

被引:529
作者
Vigário, R
Särelä, J
Jousmäki, V
Hämäläinen, M
Oja, E
机构
[1] Helsinki Univ Technol, Lab Comp & Informat Sci, FIN-02015 HUT, Finland
[2] Helsinki Univ Technol, Low Temp Lab, Brain Res Unit, FIN-02015 HUT, Finland
关键词
independent component analysis (ICA); blind source separation (BSS); unsupervised learning; electroencephalography (EEG); magnetoencephalography (MEG); artifact removal; auditory evoked field (AEF); somatosensory evoked field (SEF);
D O I
10.1109/10.841330
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multichannel recordings of the electromagnetic fields emerging from neural currents in the brain generate large amounts of data. Suitable feature extraction methods are, therefore, useful to facilitate the representation and interpretation of the data, Recently developed independent component analysis (ICA) has been shown to be an efficient tool for artifact identification and extraction from electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings. In addition, ICA has been applied to the analysis of brain signals evoked by sensory stimuli. This paper reviews our recent results in this field.
引用
收藏
页码:589 / 593
页数:5
相关论文
共 35 条
[1]   Adaptive blind signal processing - Neural network approaches [J].
Amari, SI ;
Cichocki, A .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2026-2048
[2]  
[Anonymous], P INT C ART NEUR NET
[3]   Extraction of event-related signals from multichannel bioelectrical measurements [J].
Barros, AK ;
Vigário, R ;
Jousmäki, V ;
Ohnishi, N .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (05) :583-588
[4]  
BARROS AK, 1998, P 1998 WORKSH IND AR, P1380
[5]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[6]   STATIONARITY OF THE EEG SERIES [J].
BLANCO, S ;
GARCIA, H ;
QUIROGA, RQ ;
ROMANELLI, L ;
ROSSO, OA .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1995, 14 (04) :395-399
[7]  
CARDOSO J.-F., 1989, P IEEE INT C AC SPEE, P2109
[8]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[9]   High-order contrasts for independent component analysis [J].
Cardoso, JF .
NEURAL COMPUTATION, 1999, 11 (01) :157-192
[10]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314