New structures in paraxial Gaussian beams

被引:32
作者
Kiselev, AP [1 ]
机构
[1] Russian Acad Sci, Steklov Inst Math, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
Parabolic Equation; Steklov Institute; Gauss Beam; Helmholtz Equa; Entire Space;
D O I
10.1134/1.1719131
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Within the classical parabolic equation approach, two new families of localized paraxial beams are constructed in the entire space. The solutions are different from the well-known solutions of the Hermite-Gauss or Laguerre-Gauss types. The approach is based on the separation of variables and is quite elementary. (C) 2004 MAIK "Nauka/Interperiodica".
引用
收藏
页码:479 / 481
页数:3
相关论文
共 6 条
[1]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[2]  
Grikurov V. E., 1986, Radiophysics and Quantum Electronics, V29, P233, DOI 10.1007/BF01037628
[3]  
Kiselev A. P., 1984, Soviet Technical Physics Letters, V10, P581
[4]   Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions of the wave equation via a separation of variables [J].
Kiselev, AP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23) :L345-L349
[5]  
Morse P. M., 1953, METHODS THEORETICAL, V2
[6]  
VINOGRADOVA MB, 1979, THOERY WAVES