Growth inhibitory factor, a new metallothioneinlike protein, was investigated at postmostem examination in the brains of 18 patients with Down syndrome ranging in age from 18 weeks gestation to 50 years of age and in 20 age-matched normal controls by developmental immunohistochemistry. In the frontal cortex of both Down syndrome patients and controls, growth inhibitory factor immunoreactivity was localized in the cell bodies and processes of protoplasmic astrocytes from 18 weeks gestation, and these immunoreactive processes formed so dense a meshwork in the gray matter that they outlined neuronal perikarya as negative contors in the brain at age more than 16 years, The number of growth inhibitory factor-immunoreactive astrocytes exhibited a greater increase in layer 3 than in layer 2 in controls from 37 weeks gestation to 7 months of age, although there was no difference in the growth inhibitory factor-positive cell number between layers 2 and 3 in young Down syndrome patients, Therefore, growth inhibitory factor in astrocytes may be correlated with dendritic maturation of neurons, On the other hand, growth inhibitory factor-immunoreactive astrocytes in layer 2, where senile plaques are abundant, were smaller than those in layer 3 in adult Down syndrome patients from age 32 years, When senile plaques began to immunoreact with the amyloid precursor protein, the number of growth inhibitory factor-immunoreactive astrocytes decreased around senile plaques in elderly Down syndrome brains with the Alzheimer type of dementia, On the contrary, the number of glial fibrillary acidic protein-immunoreactive astrocytes around senile plaques increased, This loss of growth inhibitory factor around senile plaques may be correlated with neuronal loss or degeneration and lead to sprouting responses which may be involved in the formation of senile plaques. (C) 1997 by Elsevier Science Inc, All rights reserved.