The trajectory of the turning point is dense for almost all tent maps

被引:22
作者
Brucks, K
Misiurewicz, M
机构
[1] UNIV WISCONSIN,DEPT MATH SCI,MILWAUKEE,WI 53211
[2] INDIANA UNIV PURDUE UNIV,DEPT MATH SCI,INDIANAPOLIS,IN 46202
关键词
D O I
10.1017/S0143385700009962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for almost every (with respect to the Lebesgue measure) a epsilon [root 2, 2], the forward trajectory of the turning point of the tent map f(a) with slope a is dense in the interval of transitivity of f(a).
引用
收藏
页码:1173 / 1183
页数:11
相关论文
共 10 条
[1]  
BLOCK LS, 1992, LECT NOTES MATH, V1513
[2]  
COLLET P, 1980, PROGR PHYSICS, V1
[3]   PSEUDO-ORBIT SHADOWING IN THE FAMILY OF TENT MAPS [J].
COVEN, EM ;
KAN, I ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 308 (01) :227-241
[4]  
Denker M., 1976, LECT NOTES MATH, V527
[5]  
Diamond B., 1991, CONTEMP MATH, V117, P57
[7]   EXISTENCE OF INVARIANT MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
LASOTA, A ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) :481-488
[8]  
MISIUREWICZ M, 1991, ANN I H POINCARE-PR, V27, P125
[9]   ENTROPY OF PIECEWISE MONOTONE MAPPINGS [J].
MISIUREWICZ, M ;
SZLENK, W .
STUDIA MATHEMATICA, 1980, 67 (01) :45-63
[10]  
van Strien Sebastian, 1988, LONDON MATH SOC LECT, V127, P57