Deficiency in NOD antigen-presenting cell function may be responsible for suboptimal CD4+ CD25+ T-cell-mediated regulation and type 1 diabetes development in NOD mice

被引:49
作者
Alard, Pascale [1 ]
Manirarora, Jean N. [1 ]
Parnell, Sarah A. [1 ]
Hudkins, Jason L. [1 ]
Clark, Sherry L. [1 ]
Kosiewicz, Michele M. [1 ]
机构
[1] Univ Louisville, Sch Med, Hlth Sci Ctr, Dept Immunol & Microbiol, Louisville, KY 40202 USA
关键词
D O I
10.2337/db05-0810
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Various defects in antigen-presenting cells (APCs) and T-cells, including regulatory cells, have been associated with type 1 diabetes development in NOD mice. CD4(+)CD25(+) regulatory cells play a crucial role in controlling various autoimmune diseases, and a deficiency in their number or function could be involved in disease development. The current study shows that NOD mice had fewer CD4(+)CD25(+) regulatory cells, which expressed normal levels of glucocorticoid-induced tumor necrosis factor receptor and cytotoxic T-lymphocyte-associated antigen-4. We have also found that NOD CD4(+)CD25(+) cells regulate poorly in vitro after stimulation with anti-CD3 and NOD APCs in comparison with B6 CD4(+)CD25(+) cells stimulated with B6 APCs. Surprisingly, stimulation of NOD CD4+CD25+ cells with B6 APCs restored regulation, whereas with the reciprocal combination, NOD APCs failed to activate B6 CD4(+)CD25(+) cells properly. Interestingly, APCs from disease-free (> 30 weeks of age), but not diabetic, NOD mice were able to activate CD4(+)CD25(+) regulatory function in vitro and apparently in vivo because only spleens of disease-free NOD mice contained potent CD4(+)CD25(+) regulatory cells that prevented disease development when transferred into young NOD recipients. These data suggest that the failure of NOD APCs to activate CD4(+)CD25(+) regulatory cells may play an important role in controlling type 1 diabetes development in NOD mice.
引用
收藏
页码:2098 / 2105
页数:8
相关论文
共 51 条
[1]   Endogenous oocyte antigens are required for rapid induction and progression of autoimmune ovarian disease following day-3 thymectomy [J].
Alard, P ;
Thompson, C ;
Agersborg, SS ;
Thatte, J ;
Setiady, Y ;
Samy, E ;
Tung, KSK .
JOURNAL OF IMMUNOLOGY, 2001, 166 (07) :4363-4369
[2]   Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains -: Elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-α and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice [J].
Alleva, DG ;
Pavlovich, RP ;
Grant, C ;
Kaser, SB ;
Beller, DI .
DIABETES, 2000, 49 (07) :1106-1115
[3]   Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation [J].
Asano, M ;
Toda, M ;
Sakaguchi, N ;
Sakaguchi, S .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :387-396
[4]   TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes [J].
Belghith, M ;
Bluestone, JA ;
Barriot, S ;
Mégret, J ;
Bach, JF ;
Chatenoud, L .
NATURE MEDICINE, 2003, 9 (09) :1202-1208
[5]   SYNGENEIC TRANSFER OF AUTOIMMUNE DIABETES FROM DIABETIC NOD MICE TO HEALTHY NEONATES - REQUIREMENT FOR BOTH L3T4+ AND LYT-2+ T-CELLS [J].
BENDELAC, A ;
CARNAUD, C ;
BOITARD, C ;
BACH, JF .
JOURNAL OF EXPERIMENTAL MEDICINE, 1987, 166 (04) :823-832
[6]   T-cell compartments of prediabetic NOD mice [J].
Berzins, SP ;
Venanzi, ES ;
Benoist, C ;
Mathis, D .
DIABETES, 2003, 52 (02) :327-334
[7]   T-CELL-MEDIATED INHIBITION OF THE TRANSFER OF AUTOIMMUNE DIABETES IN NOD MICE [J].
BOITARD, C ;
YASUNAMI, R ;
DARDENNE, M ;
BACH, JF .
JOURNAL OF EXPERIMENTAL MEDICINE, 1989, 169 (05) :1669-1680
[8]   Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation [J].
Dahlén, E ;
Hedlund, G ;
Dawe, K .
JOURNAL OF IMMUNOLOGY, 2000, 164 (05) :2444-2456
[9]   The nonobese diabetic mouse as a model of autoimmune diabetes: Immune dysregulation gets the NOD [J].
Delovitch, TL ;
Singh, B .
IMMUNITY, 1997, 7 (06) :727-738
[10]   Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood [J].
Dieckmann, D ;
Plottner, H ;
Berchtold, S ;
Berger, T ;
Schuler, G .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 193 (11) :1303-1310