High thermal performance lithium-ion battery pack including hybrid active passive thermal management system for using in hybrid/electric vehicles

被引:203
作者
Fathabadi, Hassan [1 ]
机构
[1] Kharazmi Univ, Dept Engn, Tehran, Iran
关键词
Lithium-ion battery; Phase change material; Expanded graphite; Temperature distribution; Cooling duct; Hybrid/electric vehicle; PHASE-CHANGE MATERIAL; ELECTRIC VEHICLES; ENERGY MANAGEMENT; DESIGN; POWER; SIMULATION; MODEL; BEHAVIOR; SAFETY;
D O I
10.1016/j.energy.2014.04.046
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a novel Li-ion battery pack design including hybrid active passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 degrees C remains the temperature distribution of the battery units in the desired temperature range (below 60 degrees C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 36 条
[1]   Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements [J].
Al Hallaj, S ;
Prakash, J ;
Selman, JR .
JOURNAL OF POWER SOURCES, 2000, 87 (1-2) :186-194
[2]   Thermo-mechanical behaviors of the expanded graphite-phase change material matrix used for thermal management of Li-ion battery packs [J].
Alrashdan, Abdalla ;
Mayyas, Ahmad Turki ;
Al-Hallaj, Said .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (01) :174-179
[3]   Thermal analysis of a Li-ion battery module under realistic EV operating conditions [J].
Awarke, Ali ;
Jaeger, Martin ;
Oezdemir, Oezen ;
Pischinger, Stefan .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (06) :617-630
[4]   Novel Predictive Electric Li-Ion Battery Model Incorporating Thermal and Rate Factor Effects [J].
Bhide, Sachin ;
Shim, Taehyun .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (03) :819-829
[5]   Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations [J].
Campanari, Stefano ;
Manzolini, Giampaolo ;
de la Iglesia, Fernando Garcia .
JOURNAL OF POWER SOURCES, 2009, 186 (02) :464-477
[6]   THERMAL-ANALYSIS OF LITHIUM POLYMER ELECTROLYTE BATTERIES BY A 2-DIMENSIONAL MODEL-THERMAL BEHAVIOR AND DESIGN OPTIMIZATION [J].
CHEN, YF ;
EVANS, JW .
ELECTROCHIMICA ACTA, 1994, 39 (04) :517-526
[7]   Numerical analysis of a medium scale latent energy storage unit for district heating systems [J].
Colella, Francesco ;
Sciacovelli, Adriano ;
Verda, Vittorio .
ENERGY, 2012, 45 (01) :397-406
[8]   Heat transfer in phase change materials for thermal management of electric vehicle battery modules [J].
Duan, X. ;
Naterer, G. F. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (23-24) :5176-5182
[9]   Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes [J].
Eddahech, Akram ;
Briat, Olivier ;
Vinassa, Jean-Michel .
ENERGY, 2013, 61 :432-439
[10]   Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell [J].
Fang, Weifeng ;
Kwon, Ou Jung ;
Wang, Chao-Yang .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (02) :107-115