On calculus of local fractional derivatives

被引:116
作者
Babakhani, A [1 ]
Daftardar-Gejji, V [1 ]
机构
[1] Univ Poona, Dept Math, Pune 411007, Maharashtra, India
关键词
Riemann-Liouville fractional derivatives/integrals local fractional derivatives; local fractional Taylor series;
D O I
10.1016/S0022-247X(02)00048-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local fractional derivative (LFD) operators have been introduced in the recent literature (Chaos 6 (1996) 505-513). Being local in nature these derivatives have proven useful in studying fractional differentiability properties of highly irregular and nowhere differentiable functions. In the present paper we prove Leibniz rule, chain rule for LFD operators. Generalization of directional LFD and multivariable fractional Taylor series to higher orders have been presented. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:66 / 79
页数:14
相关论文
共 7 条
[1]   Fractional differentiability of nowhere differentiable functions and dimensions [J].
Kolwankar, KM ;
Gangal, AD .
CHAOS, 1996, 6 (04) :505-513
[2]   Holder exponents of irregular signals and local fractional derivatives [J].
Kolwankar, KM ;
Gangal, AD .
PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01) :49-68
[3]  
KOLWANKAR KM, 1997, P C FRACT ENG ARCH
[4]  
Oldham K., 1970, The Fractional Calculus
[5]  
Podlubny I, 1998, Fractional Di ff erential Equations
[6]  
Risken H., 1984, FOKKER PLANCK EQUATI
[7]  
SRIVASTAVA HM, 1989, FRACTIONAL CALCULUS