Tempol protection of spinal cord mitochondria from peroxynitrite-induced oxidative damage

被引:45
作者
Xiong, Yiqin [1 ]
Singh, Indrapal N. [1 ]
Hall, Edward D. [1 ]
机构
[1] Univ Kentucky, Coll Med, Spinal Cord & Brain Injury Res Ctr, Dept Anat & Neurobiol, Lexington, KY 40536 USA
关键词
Tempol; spinal cord; mitochondria; nitrotyrosine; lipid peroxidation; oxidative damage; TRAUMATIC BRAIN-INJURY; NITRIC-OXIDE; CYTOCHROME-C; LIPID-PEROXIDATION; MOUSE MODEL; PERMEABILITY TRANSITION; NITROXIDE ANTIOXIDANT; ELECTRON-TRANSPORT; TYROSINE NITRATION; HEAD-INJURY;
D O I
10.1080/10715760902977432
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peroxynitrite (PN)-mediated mitochondrial dysfunction has been implicated in the secondary injury process after traumatic spinal cord injury (SCI). This study investigated the detrimental effects of the PN donor SIN-1(3-morpholinosydnonimine) on isolated healthy spinal cord mitochondria and the protective effects of tempol, a catalytic scavenger of PN-derived radicals. A 5 min exposure of the mitochondria to SIN-1 caused a dose-dependent decrease in the respiratory control ratio (RCR) that was accompanied by significant increases in complex I-driven states II and IV respiration rates and decreases in states III and V. These impairments occurred together with an increase in mitochondrial protein 3-nitrotyrosine (3-NT), but not in lipid peroxidation (LP)-related 4-hydroxynonenal (4-HNE). Tempol significantly antagonized the respiratory effects of SIN-1 in parallel with an attenuation of 3-NT levels. These results show that the exogenous PN donor, SIN-1, rapidly causes mitochondrial oxidative damage and complex I dysfunction identical to traumatic spinal cord mitochondrial impairment and that this is mainly due to tyrosine nitration. Consistent with that, the protection of mitochondrial respiratory function by tempol is associated with a decrease in 3-NT levels in mitochondrial proteins also similar to the previously reported antioxidant actions of tempol in traumatically-injured spinal cord mitochondria.
引用
收藏
页码:604 / 612
页数:9
相关论文
共 50 条
[1]   Calcium induced release of mitochondrial cytochrome c by different mechanisms selective for brain versus liver [J].
Andreyev, A ;
Fiskum, G .
CELL DEATH AND DIFFERENTIATION, 1999, 6 (09) :825-832
[2]   Cytochrome c release from brain mitochondria is independent of the mitochondrial permeability transition [J].
Andreyev, AY ;
Fahy, B ;
Fiskum, G .
FEBS LETTERS, 1998, 439 (03) :373-376
[3]   Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite [J].
Batthyány, C ;
Souza, JM ;
Durán, R ;
Cassina, A ;
Cerveñansky, C ;
Radi, R .
BIOCHEMISTRY, 2005, 44 (22) :8038-8046
[4]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[5]   Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat [J].
BeitYannai, E ;
Zhang, RL ;
Trembovler, V ;
Samuni, A ;
Shohami, E .
BRAIN RESEARCH, 1996, 717 (1-2) :22-28
[6]   CENTRAL NERVOUS-SYSTEM TRAUMA AND STROKE .1. BIOCHEMICAL CONSIDERATIONS FOR OXYGEN RADICAL FORMATION AND LIPID-PEROXIDATION [J].
BRAUGHLER, JM ;
HALL, ED .
FREE RADICAL BIOLOGY AND MEDICINE, 1989, 6 (03) :289-301
[7]  
Brookes PS, 1998, J NEUROCHEM, V70, P2195
[8]   Nitrogen disruption of synaptoneurosomes: an alternative method to isolate brain mitochondria [J].
Brown, MR ;
Sullivan, PG ;
Dorenbos, KA ;
Modafferi, EA ;
Geddes, JW ;
Steward, O .
JOURNAL OF NEUROSCIENCE METHODS, 2004, 137 (02) :299-303
[9]   4-hydroxy-2,2,6,6-tetramethylpiperidine (Tempol) inhibits peroxynitrite-mediated phenol nitration [J].
Carroll, RT ;
Galatsis, P ;
Borosky, S ;
Kopec, KK ;
Kumar, V ;
Althaus, JS ;
Hall, ED .
CHEMICAL RESEARCH IN TOXICOLOGY, 2000, 13 (04) :294-300
[10]   Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport [J].
Cassina, A ;
Radi, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 328 (02) :309-316