A limited-memory, quasi-Newton preconditioner for nonnegatively constrained image reconstruction

被引:5
作者
Bardsley, JM [1 ]
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
关键词
D O I
10.1364/JOSAA.21.000724
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Image reconstruction gives rise to some challenging large-scale constrained optimization problems. We consider a convex minimization problem with nonnegativity constraints that arises in astronomical imaging. To solve this problem, we use an efficient hybrid gradient projection-reduced Newton (active-set) method. By "reduced Newton," we mean that we take Newton steps only in the inactive variables. Owing to the large size of our problem, we compute approximate reduced Newton steps by using the conjugate gradient (CG) iteration. We introduce a limited-memory, quasi-Newton preconditioner that speeds up CG convergence. A numerical comparison is presented that demonstrates the effectiveness of this preconditioner. (C) 2004 Optical Society of America.
引用
收藏
页码:724 / 731
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1987, FRONT APPL MATH, DOI DOI 10.1137/1.9780898717570
[2]  
BARDSLEY JM, 2003, SIAM J SCI COMPUT US, V25
[3]  
Barlow JL, 1995, OPTIM METHOD SOFTW, V5, P235, DOI [10.1080/10556789508805613, DOI 10.1080/10556789508805613]
[4]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[6]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[7]  
Feller W., 1971, INTRO PROBABILITY TH
[8]  
Goodman J., 2000, Statistical Optics
[9]  
Goodman J.W., 1996, Opt. Eng, V35, P1513, DOI DOI 10.1016/J.APSUSC.2017.08.033
[10]  
Kelly C. T., 1999, ITERATIVE METHODS OP