Zero-variance principle for Monte Carlo algorithms

被引:107
作者
Assaraf, R [1 ]
Caffarel, M [1 ]
机构
[1] Univ Paris 06, CNRS, Lab Chim Theor Tour 22 23, F-75252 Paris 05, France
关键词
D O I
10.1103/PhysRevLett.83.4682
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general approach to greatly increase at little cost the efficiency of Monte Carlo algorithms. To each observable to be computed we associate a renormalized observable (improved estimator) having the same average but a different variance. By writing down the zero-variance condition a fundamental equation determining the optimal choice for the renormalized observable is derived (zero-variance principle for each observable separately). We show, with several examples including classical and quantum Monte Carlo calculations, that the method can be very powerful.
引用
收藏
页码:4682 / 4685
页数:4
相关论文
共 12 条
[1]   Quantum Monte Carlo loop algorithm for the t-J model [J].
Ammon, B ;
Evertz, HG ;
Kawashima, N ;
Troyer, M ;
Frischmuth, B .
PHYSICAL REVIEW B, 1998, 58 (08) :4304-4319
[2]   QUANTUM MONTE-CARLO FOR MOLECULES - GREEN-FUNCTION AND NODAL RELEASE [J].
CEPERLEY, DM ;
ALDER, BJ .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (12) :5833-5844
[3]  
Clementi E., 1974, Atomic Data and Nuclear Data Tables, V14, P177, DOI 10.1016/S0092-640X(74)80016-1
[4]   LOGARITHMIC TERMS IN WAVE FUNCTIONS OF GROUND STATE OF 2-ELECTRON ATOMS [J].
FRANKOWSKI, K ;
PEKERIS, CL .
PHYSICAL REVIEW, 1966, 146 (01) :46-+
[5]  
METROPOLIS N, 1953, J CHEM PHYS, V21, P1097
[6]   Crystal statistics I A two-dimensional model with an order-disorder transition [J].
Onsager, L .
PHYSICAL REVIEW, 1944, 65 (3/4) :117-149
[7]   A MEASUREMENT OF THE STRING TENSION NEAR THE CONTINUUM-LIMIT [J].
PARISI, G ;
PETRONZIO, R ;
RAPUANO, F .
PHYSICS LETTERS B, 1983, 128 (06) :418-420
[8]   CORRELATED MONTE-CARLO WAVE-FUNCTIONS FOR THE ATOMS HE THROUGH NE [J].
SCHMIDT, KE ;
MOSKOWITZ, JW .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (06) :4172-4178
[9]   MONTE-CARLO STUDY OF WEIGHTED PERCOLATION CLUSTERS RELEVANT TO THE POTTS MODELS [J].
SWEENY, M .
PHYSICAL REVIEW B, 1983, 27 (07) :4445-4455
[10]   NONUNIVERSAL CRITICAL-DYNAMICS IN MONTE-CARLO SIMULATIONS [J].
SWENDSEN, RH ;
WANG, JS .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :86-88