Equilibrium statistical mechanics of one-dimensional Hamiltonian systems with long-range force

被引:14
作者
Elskens, Y [1 ]
Antoni, M [1 ]
机构
[1] INFM, LAB FORUM, I-50125 FLORENCE, ITALY
关键词
D O I
10.1103/PhysRevE.55.6575
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The system of N identical classical particles on the circle of length L interacting via a pair potential is investigated in the mean field limit (N-->infinity, L fixed). Its physical properties are determined by the Fourier components of the interaction (mean) field. The partition function, the joint distribution of the interaction fields, the local field, and the correlation functions are computed. If the interaction is semidefinite non-negative, field components become independent for N-->infinity and satisfy central limit theorems. If the interaction has negative Fourier components, a phase transition occurs.
引用
收藏
页码:6575 / 6581
页数:7
相关论文
共 32 条
[1]   CLUSTERING AND RELAXATION IN HAMILTONIAN LONG-RANGE DYNAMICS [J].
ANTONI, M ;
RUFFO, S .
PHYSICAL REVIEW E, 1995, 52 (03) :2361-2374
[2]  
Antoni M., 1994, Transport, Chaos and Plasma Physics, P120
[3]  
ANTONI M, IN PRESS HAMILTONIAN
[4]  
ANTONI M, 1993, THESIS U PROVENCE MA
[5]  
ANTONI M, UNPUB
[6]  
ANTONI M, 1996, DYNAMICS TRANSPORT P, P1
[7]  
Balescu R., 1963, Statistical Mechanics of Charged Particles (Monographs in Statistical Physics and Thermodynamics)
[8]   STATISTICAL-MECHANICS OF SIMPLE COULOMB-SYSTEMS [J].
BAUS, M ;
HANSEN, JP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 59 (01) :1-94
[9]   1-DIMENSIONAL GASES WITH HARD-CORE REPULSION [J].
BAXTER, RJ .
PHYSICS OF FLUIDS, 1965, 8 (04) :687-&
[10]  
BAXTER RJ, 1963, P CAMB PHILOS SOC, V59, P779