Improving the accuracy of the matrix differentiation method for arbitrary collocation points

被引:35
作者
Baltensperger, R [1 ]
机构
[1] Univ Fribourg, Inst Math, CH-1700 Fribourg, Switzerland
关键词
spectral methods; differentiation matrix; barycentric formula; roundoff error;
D O I
10.1016/S0168-9274(99)00077-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the errors incurred when using the standard formula for calculating differentiation matrices in spectral methods and suggest more precise ways of calculating the derivatives and their matrices. (C) 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 1992, A remark on pseudospectral differentiation matrices
[2]  
Baltensperger R, 1999, COMPUT MATH APPL, V38, P119
[3]   ROUNDOFF ERROR IN COMPUTING DERIVATIVES USING THE CHEBYSHEV DIFFERENTIATION MATRIX [J].
BAYLISS, A ;
CLASS, A ;
MATKOWSKY, BJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 116 (02) :380-383
[4]   ON THE ERRORS INCURRED CALCULATING DERIVATIVES USING CHEBYSHEV POLYNOMIALS [J].
BREUER, KS ;
EVERSON, RM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 99 (01) :56-67
[5]  
CANUTO P., 1988, SPECTRAL METHODS FLU
[6]   ACCURACY AND SPEED IN COMPUTING THE CHEBYSHEV COLLOCATION DERIVATIVE [J].
DON, WS ;
SOLOMONOFF, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (06) :1253-1268
[7]  
HENRICI P., 1982, Essentials of Numerical Analysis with Pocket Calculator Demonstrations
[8]  
ROTHMAN EE, 1991, HIGH PERFORMANCE COM, V2, P423
[9]  
SCHNEIDER C, 1986, MATH COMPUT, V47, P285, DOI 10.1090/S0025-5718-1986-0842136-8
[10]   A FAST ALGORITHM FOR SPECTRAL DIFFERENTIATION [J].
SOLOMONOFF, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :174-177