Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds

被引:48
作者
Madurantakam, Parthasarathy A. [1 ]
Cost, Christopher P.
Simpson, David G. [2 ,3 ]
Bowlin, Gary L. [1 ]
机构
[1] Dept Biomed Engn, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Sch Med, Dept Urol Surg, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Sch Med, Dept Anat & Neurobiol, Richmond, VA 23284 USA
关键词
electrospinning; extracellular matrix; nanofibrous scaffolds; phase separation; self-assembly; tissue engineering; ASSEMBLING PEPTIDE SCAFFOLDS; VISCOELASTIC PHASE-SEPARATION; ELECTRICALLY FORCED JETS; NANO-FIBROUS SCAFFOLDS; EXTRACELLULAR-MATRIX; MECHANICAL-PROPERTIES; BIOMEDICAL APPLICATIONS; ELECTROSPUN NANOFIBERS; AMPHIPHILE NANOFIBERS; BIOLOGICAL-MATERIALS;
D O I
10.2217/17435889.4.2.193
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Native extracellular matrix (ECM) provides structural support to the multicellular organism on a macroscopic scale and establishes a unique microenvironment (niche) to tissue- and organ-specific cell types. Both these functions are critical for optimal function of the organism. These natural ECMs comprise predominantly fibrillar proteins, collagen and elastin and are synthesized as monomers but undergo hierarchical organization into well-defined nanoscaled structural units. The interaction between the cells and ECM is dynamic, reciprocal and essential for tissue development, maintenance of function, repair and regeneration processes. Tissue-engineering scaffolds are synthetic, biomimetic ECM analogues that have great promise in regenerative medicine. Ongoing efforts in mimicking the native ECM in terms of composition and dimension have resulted in three strategies that permit the generation of scaffolds in nanometer dimensions. Although excellent reviews regarding the applications of these strategies in tissue engineering are available, a comprehensive review of the science behind these fabrication techniques does not exist. This review intends to fill this critical gap in the existing knowledge in the fast-expanding field of nanofibrous scaffolds. A thorough understanding of the fabrication processes would enable us to better exploit available technologies to produce superior tissue-engineering scaffolds.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 88 条
[1]   Pressure-assisted cell spinning: a direct protocol for spinning biologically viable cell-bearing fibres and scaffolds [J].
Arumuganathar, Sumathy ;
Irvine, Scott ;
McEwan, Jean R. ;
Jayasinghe, Suwan N. .
BIOMEDICAL MATERIALS, 2007, 2 (04) :211-219
[2]   Nanofiber technology: Designing the next generation of tissue engineering scaffolds [J].
Barnes, Catherine P. ;
Sell, Scott A. ;
Boland, Eugene D. ;
Simpson, David G. ;
Bowlin, Gary L. .
ADVANCED DRUG DELIVERY REVIEWS, 2007, 59 (14) :1413-1433
[3]   CRYSTAL-STRUCTURE AND MOLECULAR-STRUCTURE OF A COLLAGEN-LIKE PEPTIDE AT 1.9-ANGSTROM RESOLUTION [J].
BELLA, J ;
EATON, M ;
BRODSKY, B ;
BERMAN, HM .
SCIENCE, 1994, 266 (5182) :75-81
[4]   Self-assembling peptide amphiphile nanofiber matrices for cell entrapment [J].
Beniash, E ;
Hartgerink, JD ;
Storrie, H ;
Stendahl, JC ;
Stupp, SI .
ACTA BIOMATERIALIA, 2005, 1 (04) :387-397
[5]   Cell-matrix adhesion [J].
Berrier, Allison L. ;
Yamada, Kenneth M. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 213 (03) :565-573
[6]   Electrospinning polydioxanone for biomedical applications [J].
Boland, ED ;
Coleman, BD ;
Barnes, CP ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
ACTA BIOMATERIALIA, 2005, 1 (01) :115-123
[7]   Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering [J].
Boland, ED ;
Telemeco, TA ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 71B (01) :144-152
[8]   Self-assembly of large and small molecules into hierarchically ordered sacs and membranes [J].
Capito, Ramille M. ;
Azevedo, Helena S. ;
Velichko, Yuri S. ;
Mata, Alvaro ;
Stupp, Samuel I. .
SCIENCE, 2008, 319 (5871) :1812-1816
[9]   COLLAGEN FABRICS AS BIOMATERIALS [J].
CAVALLARO, JF ;
KEMP, PD ;
KRAUS, KH .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 43 (08) :781-791
[10]   Mechanotransduction at cell-matrix and cell-cell contacts [J].
Chen, CS ;
Tan, J ;
Tien, J .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2004, 6 :275-302