GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis

被引:145
作者
Kwon, Sun Jae [1 ]
Jin, Hak Chul [1 ]
Lee, Soohyun [2 ]
Nam, Myung Hee [3 ]
Chung, Joo Hee [3 ]
Kwon, Soon Il [1 ]
Ryu, Choong-Min [2 ]
Park, Ohkmae K. [1 ]
机构
[1] Korea Univ, Sch Life Sci & Biotechnol, Seoul 136701, South Korea
[2] KRIBB, Syst Microbiol Res Ctr, Taejon 305600, South Korea
[3] Korea Basic Sci Inst, Metabolome Anal Team, Seoul 136701, South Korea
关键词
Arabidopsis; GDSL lipase; systemic resistance; ethylene; salicylic acid; jasmonic acid; SALICYLIC-ACID; ACQUIRED-RESISTANCE; DISEASE RESISTANCE; METHYL SALICYLATE; GENE; THALIANA; DEFENSE; PATHWAYS; ACTIVATION; JASMONATE;
D O I
10.1111/j.1365-313X.2008.03772.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Systemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola, Erwinia carotovora and Pseudomonas syringae, and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2-inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s).
引用
收藏
页码:235 / 245
页数:11
相关论文
共 46 条
[1]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[2]   Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database [J].
Beisson, F ;
Koo, AJK ;
Ruuska, S ;
Schwender, J ;
Pollard, M ;
Thelen, JJ ;
Paddock, T ;
Salas, JJ ;
Savage, L ;
Milcamps, A ;
Mhaske, VB ;
Cho, YH ;
Ohlrogge, JB .
PLANT PHYSIOLOGY, 2003, 132 (02) :681-697
[3]   Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4 [J].
Brodersen, Peter ;
Petersen, Morten ;
Nielsen, Henrik Bjorn ;
Zhu, Shijiang ;
Newman, Mari-Anne ;
Shokat, Kevan M. ;
Rietz, Steffen ;
Parker, Jane ;
Mundy, John .
PLANT JOURNAL, 2006, 47 (04) :532-546
[4]   The role of ethylene in host-pathoven interactions [J].
Broekaert, Willem F. ;
Delaure, Stijn L. ;
De Bolle, Miguel F. C. ;
Cammue, Bruno P. A. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2006, 44 :393-416
[5]   Modulation of the biological activity of a tobacco LTP1 by lipid complexation [J].
Buhot, N ;
Gomès, E ;
Milat, ML ;
Ponchet, M ;
Marion, D ;
Lequeu, J ;
Delrot, S ;
Coutos-Thévenot, P ;
Blein, JP .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (11) :5047-5052
[6]   Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid [J].
Chaturvedi, Ratnesh ;
Krothapalli, Kartikeya ;
Makandar, Ragiba ;
Nandi, Ashis ;
Sparks, Alexis A. ;
Roth, Mary R. ;
Welti, Ruth ;
Shah, Jyoti .
PLANT JOURNAL, 2008, 54 (01) :106-117
[7]   NPR1, all things considered [J].
Dong, XN .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (05) :547-552
[8]   Systemic acquired resistance [J].
Durrant, WE ;
Dong, X .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :185-209
[9]   EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases [J].
Falk, A ;
Feys, BJ ;
Frost, LN ;
Jones, JDG ;
Daniels, MJ ;
Parker, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3292-3297
[10]   Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity [J].
Feys, BJ ;
Wiermer, M ;
Bhat, RA ;
Moisan, LJ ;
Medina-Escobar, N ;
Neu, C ;
Cabral, A ;
Parker, JE .
PLANT CELL, 2005, 17 (09) :2601-2613