A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems

被引:171
作者
Facchinei, F [1 ]
Kanzow, C [1 ]
机构
[1] UNIV HAMBURG,INST APPL MATH,D-20146 HAMBURG,GERMANY
关键词
nonlinear complementarity problems; nonsmooth equations; inexact Newton methods; large-scale problems;
D O I
10.1007/BF02614395
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A new algorithm for the solution of large-scale nonlinear complementarity problems is introduced. The algorithm is based on a nonsmooth equation reformulation of the complementarity problem and on an inexact Levenberg-Marquardt-type algorithm for its solution. Under mild assumptions, and requiring only the approximate solution of a linear system at each iteration, the algorithm is shown to be both globally and superlinearly convergent, even on degenerate problems. Numerical results for problems with up to 10000 variables are presented.
引用
收藏
页码:493 / 512
页数:20
相关论文
共 36 条
[1]  
[Anonymous], 1997, SIAM J CONTROL OPTIM
[2]  
Bertsekas D. P., 2019, Reinforcement learning and optimal control
[3]  
Chen C. H., 1996, COMPUTATIONAL OPTIMI, V5, P97
[4]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[5]  
Cottle RW., 1992, LINEAR COMPLEMENTARI
[6]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[7]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[8]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[9]  
Dirkse S.P., 1995, Optimization Methods and Software, V5, P319, DOI [DOI 10.1080/10556789508805619, 10.1080/10556789508805619]
[10]   MINIMIZATION OF SC1 FUNCTIONS AND THE MARATOS EFFECT [J].
FACCHINEI, F .
OPERATIONS RESEARCH LETTERS, 1995, 17 (03) :131-137