An experimental study of benchmarking functions for genetic algorithms

被引:107
作者
Digalakis, JG [1 ]
Margaritis, KG [1 ]
机构
[1] Univ Macedonia, Dept Appl Informat, Thessaloniki, Greece
关键词
genetic algorithms performance; generational replacement model; steady-state replacement model; population size; pseudo-random number generators; ISAAC PNG;
D O I
10.1080/00207160210939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a review and experimental results oil the major benchmarking functions used for performance control of Genetic Algorithms (GAs). Parameters considered include the eect of population size, crossover probability and pseudo-random number generators (PNGs). The general computational behavior of two basic GAs models, the Generational Replacement Model (GRM) and the Steady State Replacement Model (SSRM) is evaluated.
引用
收藏
页码:403 / 416
页数:14
相关论文
共 22 条
[1]  
BAECK T, 1996, EVOLUTIONARY ALGORIT, P138
[2]  
Baeck T., 1991, INT WISSENSCHAFTLICH, P1
[3]  
CARUANA RA, 1989, P 11 INT JOINT C ART, P750
[4]  
De Jong K. A., 1975, An analysis of the bechavior of a class of genetic adaptive systems
[5]  
ESHELMAN LJ, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P10
[6]  
FORD RW, 1997, HIGH PERFORMANCE SOF
[7]   OPTIMIZATION OF CONTROL PARAMETERS FOR GENETIC ALGORITHMS [J].
GREFENSTETTE, JJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1986, 16 (01) :122-128
[8]  
LAZAUSKAS L, 1997, OPTIMIZATION TEST FU
[9]  
LEVINE D, 1996, USERS GUIDE PGAPACK, P19
[10]  
MEYSENBURG MM, 1997, EECT QUALITY PSEUDO