Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

被引:352
作者
Seko, Atsuto [1 ,2 ,4 ]
Togo, Atsushi [2 ]
Hayashi, Hiroyuki [1 ,4 ]
Tsuda, Koji [3 ,4 ,5 ]
Chaput, Laurent [6 ]
Tanaka, Isao [1 ,2 ,4 ,7 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan
[2] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan
[3] Univ Tokyo, Grad Sch Frontier Sci, Dept Computat Biol, Kashiwa, Chiba 2778561, Japan
[4] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, Tsukuba, Ibaraki 3050047, Japan
[5] Natl Inst Adv Ind Sci & Technol, Biomed Res Inst, Koto Ku, Tokyo 1350064, Japan
[6] Univ Lorraine, Ctr Natl Rech Sci, LEMTA, Unite Mixte Rech 7563, F-54506 Vandoeuvre Les Nancy, France
[7] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
AUGMENTED-WAVE METHOD; THERMOELECTRIC-MATERIALS; DESIGN; DISCOVERY; CRYSTALS; BATTERY;
D O I
10.1103/PhysRevLett.115.205901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap < 1 eV, which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
[Anonymous], 1987, CHEST
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling [J].
Carrete, Jesus ;
Li, Wu ;
Mingo, Natalio ;
Wang, Shidong ;
Curtarolo, Stefano .
PHYSICAL REVIEW X, 2014, 4 (01)
[4]   Opportunities and challenges for first-principles materials design and applications to Li battery materials [J].
Ceder, Gerbrand .
MRS BULLETIN, 2010, 35 (09) :693-701
[5]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/nmat3568, 10.1038/NMAT3568]
[6]   AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Wang, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Taylor, Richard H. ;
Nelson, Lance J. ;
Hart, Gus L. W. ;
Sanvito, Stefano ;
Buongiorno-Nardelli, Marco ;
Mingo, Natalio ;
Levy, Ohad .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :227-235
[7]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[8]   Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms [J].
Fujimura, Koji ;
Seko, Atsuto ;
Koyama, Yukinori ;
Kuwabara, Akihide ;
Kishida, Ippei ;
Shitara, Kazuki ;
Fisher, Craig A. J. ;
Moriwake, Hiroki ;
Tanaka, Isao .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :980-985
[9]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[10]   A taxonomy of global optimization methods based on response surfaces [J].
Jones, DR .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (04) :345-383