In Silico Meets In Vivo: Towarcs Computational CRISPR-Based sgRNA Design

被引:83
作者
Chuai, Guo-hui [1 ]
Wang, Qi-Long [2 ]
Liu, Qi [1 ]
机构
[1] Tongji Univ, Shanghai Peoples Hosp 10, Sch Life Sci & Technol, Dept Cent Lab, Shanghai, Peoples R China
[2] Nanjing Med Univ, Huaian Peoples Hosp 1, Dept Clin Oncol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
OFF-TARGET CLEAVAGE; GUIDE-RNA DESIGN; WEB TOOL; GENETIC SCREENS; HUMAN-CELLS; GENOME; CAS9; NUCLEASES; ENDONUCLEASE; ENABLES;
D O I
10.1016/j.tibtech.2016.06.008
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-based genome editing has been widely implemented in various cell types. In silica single guide RNA (sgRNA) design is a key step for successful gene editing using the CRISPR system, and continuing efforts are aimed at refining in silica sgRNA design with high on-target efficacy and reduced off-target effects. Many sgRNA design tools are available, but careful assessments of their application scenarios and performance benchmarks across different types of genome-editing data are needed. Efficient in silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Comprehensive evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 67 条
[1]  
Aach J, 2014, bioRxiv
[2]   Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans [J].
Arribere, Joshua A. ;
Bell, Ryan T. ;
Fu, Becky X. H. ;
Artiles, Karen L. ;
Hartman, Phil S. ;
Fire, Andrew Z. .
GENETICS, 2014, 198 (03) :837-U842
[3]   Microhomology-based choice of Cas9 nuclease target sites [J].
Bae, Sangsu ;
Kweon, Jiyeon ;
Kim, Heon Seok ;
Kim, Jin-Soo .
NATURE METHODS, 2014, 11 (07) :705-706
[4]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[5]   CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets [J].
Biswas, Ambarish ;
Gagnon, Joshua N. ;
Brouns, Stan J. J. ;
Fineran, Peter C. ;
Brown, Chris M. .
RNA BIOLOGY, 2013, 10 (05) :817-827
[6]  
Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
[7]   Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System [J].
Chen, Baohui ;
Gilbert, Luke A. ;
Cimini, Beth A. ;
Schnitzbauer, Joerg ;
Zhang, Wei ;
Li, Gene-Wei ;
Park, Jason ;
Blackburn, Elizabeth H. ;
Weissman, Jonathan S. ;
Qi, Lei S. ;
Huang, Bo .
CELL, 2013, 155 (07) :1479-1491
[8]  
Chuai Guohui, 2016, Mol Ther Nucleic Acids, V5, pe323, DOI 10.1038/mtna.2016.35
[9]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[10]   Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing [J].
Crosetto, Nicola ;
Mitra, Abhishek ;
Silva, Maria Joao ;
Bienko, Magda ;
Dojer, Norbert ;
Wang, Qi ;
Karaca, Elif ;
Chiarle, Roberto ;
Skrzypczak, Magdalena ;
Ginalski, Krzysztof ;
Pasero, Philippe ;
Rowicka, Maga ;
Dikic, Ivan .
NATURE METHODS, 2013, 10 (04) :361-+