Targeting noncoding RNAs in disease

被引:578
作者
Adams, Brian D. [1 ,2 ]
Parsons, Christine [3 ,5 ]
Walker, Lisa [4 ]
Zhang, Wen Cai [4 ]
Slack, Frank J. [4 ]
机构
[1] SUNY Albany, RNA Inst, Albany, NY 12222 USA
[2] Yale Univ, Sch Med, Invest Med Program, 2 Church St South,Suite 114, New Haven, CT 06520 USA
[3] Bowdoin Coll, Dept Biochem, Brunswick, ME 04011 USA
[4] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Pathol, Inst RNA Med,Canc Ctr, 330 Brookline Ave, Boston, MA 02115 USA
[5] Univ Connecticut, Ctr Hlth, Dept Med, Farmington, CT USA
基金
美国国家科学基金会;
关键词
CELL LUNG-CANCER; MICRORNA EXPRESSION; TUMOR ANGIOGENESIS; POOR-PROGNOSIS; NUCLEIC-ACIDS; MOUSE MODEL; LONG; GENE; PROLIFERATION; PROMOTES;
D O I
10.1172/JCI84424
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Many RNA species have been identified as important players in the development of chronic diseases, including cancer. Over the past decade, numerous studies have highlighted how regulatory RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) play crucial roles in the development of a disease state. It is clear that the aberrant expression of miRNAs promotes tumor initiation and progression, is linked with cardiac dysfunction, allows for the improper physiological response in maintaining glucose and insulin levels, and can prevent the appropriate integration of neuronal networks, resulting in neurodegenerative disorders. Because of this, there has been a major effort to therapeutically target these noncoding RNAs. In just the past 5 years, over 100 antisense oligonucleotide-based therapies have been tested in phase I clinical trials, a quarter of which have reached phase II/III. Most notable are fomivirsen and mipomersen, which have received FDA approval to treat cytomegalovirus retinitis and high blood cholesterol, respectively. The continued improvement of innovative RNA modifications and delivery entities, such as nanoparticles, will aid in the development of future RNA-based therapeutics for a broader range of chronic diseases. Here we summarize the latest promises and challenges of targeting noncoding RNAs in disease.
引用
收藏
页码:761 / 771
页数:11
相关论文
共 143 条
  • [1] miR-34a Silences c-SRC to Attenuate Tumor Growth in Triple-Negative Breast Cancer
    Adams, Brian D.
    Wali, Vikram B.
    Cheng, Christopher J.
    Inukai, Sachi
    Booth, Carmen J.
    Agarwal, Seema
    Rimm, David L.
    Gyorffy, Balazs
    Santarpia, Libero
    Pusztai, Lajos
    Saltzman, W. Mark
    Slack, Frank J.
    [J]. CANCER RESEARCH, 2016, 76 (04) : 927 - 939
  • [2] Aberrant Regulation and Function of MicroRNAs in Cancer
    Adams, Brian D.
    Kasinski, Andrea L.
    Slack, Frank J.
    [J]. CURRENT BIOLOGY, 2014, 24 (16) : R762 - R776
  • [3] Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics
    Ali, Syed Salman
    Kala, Chandra
    Abid, Mohd
    Ahmad, Nabeel
    Sharma, Uma Shankar
    Khan, Najam Ali
    [J]. JOURNAL OF ACUTE DISEASE, 2016, 5 (01) : 9 - 15
  • [4] Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss
    Arun, Gayatri
    Diermeier, Sarah
    Akerman, Martin
    Chang, Kung-Chi
    Wilkinson, J. Erby
    Hearn, Stephen
    Kim, Youngsoo
    MacLeod, A. Robert
    Krainer, Adrian R.
    Norton, Larry
    Brogi, Edi
    Egeblad, Mikala
    Spector, David L.
    [J]. GENES & DEVELOPMENT, 2016, 30 (01) : 34 - 51
  • [5] Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma
    Babae, Negar
    Bourajjaj, Meriem
    Liu, Yijia
    Van Beijnum, Judy R.
    Cerisoli, Francesco
    Scaria, Puthupparampil V.
    Verheul, Mark
    Van Berkel, Maaike P.
    Pieters, Ebel H. E.
    Van Haastert, Rick J.
    Yousefi, Afrouz
    Mastrobattista, Enrico
    Storm, Gert
    Berezikov, Eugene
    Cuppen, Edwin
    Woodle, Martin
    Schaapveld, Roel Q. J.
    Prevost, Gregoire P.
    Griffioen, Arjan W.
    Van Noort, Paula I.
    Schiffelers, Raymond M.
    [J]. ONCOTARGET, 2014, 5 (16) : 6687 - 6700
  • [6] Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma
    Babar, Imran A.
    Cheng, Christopher J.
    Booth, Carmen J.
    Liang, Xianping
    Weidhaas, Joanne B.
    Saltzman, W. Mark
    Slack, Frank J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (26) : E1695 - E1704
  • [7] MicroRNA expression in the adult mouse central nervous system
    Bak, Mads
    Silahtaroglu, Asli
    Moller, Morten
    Christensen, Mette
    Rath, Martin F.
    Skryabin, Boris
    Tommerup, Niels
    Kauppinen, Sakari
    [J]. RNA, 2008, 14 (03) : 432 - 444
  • [8] miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner
    Bandi, Nora
    Vassella, Erik
    [J]. MOLECULAR CANCER, 2011, 10
  • [9] Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model
    Banyard, Jacqueline
    Chung, Ivy
    Wilson, Arianne M.
    Vetter, Guillaume
    Le Bechec, Antony
    Bielenberg, Diane R.
    Zetter, Bruce R.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [10] MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer's disease
    Banzhaf-Strathmann, Julia
    Benito, Eva
    May, Stephanie
    Arzberger, Thomas
    Tahirovic, Sabina
    Kretzschmar, Hans
    Fischer, Andre
    Edbauer, Dieter
    [J]. EMBO JOURNAL, 2014, 33 (15) : 1667 - 1680