Olfactory receptor surface expression is driven by association with the β2-adrenergic receptor

被引:94
作者
Hague, C [1 ]
Uberti, MA
Chen, ZJ
Bush, CF
Jones, SV
Ressler, KJ
Hall, RA
Minneman, KP
机构
[1] Emory Univ, Sch Med, Dept Pharmacol, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Psychiat, Atlanta, GA 30322 USA
[3] Emory Univ, Sch Med, Yerkes Natl Primate Ctr, Atlanta, GA 30322 USA
关键词
D O I
10.1073/pnas.0403854101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Olfactory receptors (ORs) comprise more than half of the large class I G protein-coupled receptor (GPCR) superfamily. Although cloned over a decade ago, little is known about their properties because wild-type ORs do not efficiently reach the cell surface following heterologous expression. Receptor-receptor interactions strongly influence surface trafficking of other GPCRs, and we examined whether a similar mechanism might be involved in OR surface expression. Olfactory neurons are known to express beta-adrenergic receptors (ARs), and we found that coexpression with beta(2)-ARs, but not any other AR subtypes, dramatically increased mouse 71 (M71) OR surface expression in human embryonic kidney 293 cells. A persistent physical interaction between M71 ORs and beta(2)-ARs was shown by coimmunoprecipitation and by cointernalization of the two receptors in response to their specific ligands. Also, coexpression of wild-type M71 ORs with beta(2)-ARs resulted in cAMP responses to the M71 ligand acetophenone. Finally, in situ hybridization studies showed extensive colocalization of M71 OR and beta(2)-AR expression in mouse olfactory epithelium. These data demonstrate the successful heterologous surface expression of a functional wild-type OR and reveal that persistent physical association with other GPCRs can control OR surface expression.
引用
收藏
页码:13672 / 13676
页数:5
相关论文
共 43 条
[1]  
Barber RD, 2000, MOL NEUROBIOL, V21, P161
[2]   Oligomerization of G-protein-coupled transmitter receptors [J].
Bouvier, M .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :274-286
[3]   Odorant receptor expression defines functional units in the mouse olfactory system [J].
Bozza, T ;
Feinstein, P ;
Zheng, C ;
Mombaerts, P .
JOURNAL OF NEUROSCIENCE, 2002, 22 (08) :3033-3043
[4]   A NOVEL MULTIGENE FAMILY MAY ENCODE ODORANT RECEPTORS - A MOLECULAR-BASIS FOR ODOR RECOGNITION [J].
BUCK, L ;
AXEL, R .
CELL, 1991, 65 (01) :175-187
[5]   The molecular architecture of odor and pheromone sensing in mammals [J].
Buck, LB .
CELL, 2000, 100 (06) :611-618
[6]   Differences in the cellular localization and agonist-mediated internalization properties of the α1-adrenoceptor subtypes [J].
Chalothorn, D ;
McCune, DF ;
Edelmann, SE ;
García-Cazarín, ML ;
Tsujimoto, G ;
Piascik, MT .
MOLECULAR PHARMACOLOGY, 2002, 61 (05) :1008-1016
[7]   T2Rs function as bitter taste receptors [J].
Chandrashekar, J ;
Mueller, KL ;
Hoon, MA ;
Adler, E ;
Feng, LX ;
Guo, W ;
Zuker, CS ;
Ryba, NJP .
CELL, 2000, 100 (06) :703-711
[8]   ALLELIC INACTIVATION REGULATES OLFACTORY RECEPTOR GENE-EXPRESSION [J].
CHESS, A ;
SIMON, I ;
CEDAR, H ;
AXEL, R .
CELL, 1994, 78 (05) :823-834
[9]   BETA-ADRENERGIC-RECEPTOR KINASE-2 AND BETA-ARRESTIN-2 AS MEDIATORS OF ODORANT-INDUCED DESENSITIZATION [J].
DAWSON, TM ;
ARRIZA, JL ;
JAWORSKY, DE ;
BORISY, FF ;
ATTRAMADAL, H ;
LEFKOWITZ, RJ ;
RONNETT, GV .
SCIENCE, 1993, 259 (5096) :825-829
[10]   NEUROTRANSMITTER ANTAGONISTS BLOCK SOME ODOR RESPONSES IN OLFACTORY RECEPTOR NEURONS [J].
FIRESTEIN, S ;
SHEPHERD, GM .
NEUROREPORT, 1992, 3 (08) :661-664