Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays

被引:41
作者
Ghoshal, Amitabh [1 ]
Divliansky, Ivan [1 ]
Kik, Pieter G. [1 ,2 ]
机构
[1] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
nanoparticles; polarisability; reflectivity; surface plasmon resonance;
D O I
10.1063/1.3122922
中图分类号
O59 [应用物理学];
学科分类号
摘要
Surface plasmon excitation using resonant metal nanoparticles is studied experimentally. Geometry dependent reflection measurements reveal the existence of several optical resonances. Strong coupling of the in-plane nanoparticle plasmon resonance and propagating plasmons is evident from clear anticrossing behavior. Reflection measurements at high numerical aperture demonstrate the excitation of surface plasmons via out-of-plane particle polarization. The thus excited plasmons do not exhibit anticrossing in the considered frequency range. The results are explained in terms of the known surface plasmon dispersion relation and the anisotropic frequency dependent nanoparticle polarizability. These findings are important for applications utilizing surface-coupled nanoparticle plasmon resonances.
引用
收藏
页数:3
相关论文
共 10 条
[1]   Experimental study of the interaction between localized and propagating surface plasmons [J].
Chu, Yizhuo ;
Crozier, Kenneth B. .
OPTICS LETTERS, 2009, 34 (03) :244-246
[2]  
GHOSHAL A, 2005, P SPIE, V5927
[3]   Theory and simulation of surface plasmon excitation using resonant metal nanoparticle arrays [J].
Ghoshal, Amitabh ;
Kik, Pieter G. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (11)
[4]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[5]   Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap [J].
Pile, D. F. P. ;
Gramotnev, D. K. ;
Haraguchi, M. ;
Okamoto, T. ;
Fukui, M. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (01)
[6]  
Raether H., 1988, SURFACE PLASMONS SMO, Vvol. 111
[7]   Dielectric stripes on gold as surface plasmon waveguides [J].
Steinberger, B ;
Hohenau, A ;
Ditlbacher, H ;
Stepanov, AL ;
Drezet, A ;
Aussenegg, FR ;
Leitner, A ;
Krenn, JR .
APPLIED PHYSICS LETTERS, 2006, 88 (09)
[8]   Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides [J].
Tanaka, K ;
Tanaka, M ;
Sugiyama, T .
OPTICS EXPRESS, 2005, 13 (01) :256-266
[9]   MULTIMEDIA DISPERSION-RELATION FOR SURFACE ELECTROMAGNETIC-WAVES [J].
WARD, CA ;
BHASIN, K ;
BELL, RJ ;
ALEXANDER, RW ;
TYLER, I .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (05) :1674-1676
[10]   Optical near-field distributions of surface plasmon waveguide modes [J].
Weeber, JC ;
Lacroute, Y ;
Dereux, A .
PHYSICAL REVIEW B, 2003, 68 (11)