CO2 as a separation switch for ionic liquid/organic mixtures

被引:294
作者
Scurto, AM [1 ]
Aki, SNVK [1 ]
Brennecke, JF [1 ]
机构
[1] Univ Notre Dame, Dept Chem Engn, Notre Dame, IN 46556 USA
关键词
D O I
10.1021/ja0268682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A novel technique to separate ionic liquids from organic compounds is introduced which uses carbon dioxide to induce the formation of an ionic liquid-rich phase and an organic-rich liquid phase in mixtures of methanol and 3-butyl-1-methyl-imidazolium hexafluorophosphate ([C4mim][PF6]). If the temperature is above the critical temperature of CO2 then the methanol-rich phase can become completely miscible with the CO2-rich phase, and this new phase is completely ionic liquid-free. Since CO2 is nonpolar, it is not equipped to solvate ions. As the CO2 dissolves in the methanol/[C4mim][PF6] mixture, the solvent power of the CO2-expanded liquid is significantly reduced, inducing the formation of the second liquid phase that is rich in ionic liquid. This presents a new way to recover products from ionic liquid mixtures and purify organic phases that have been contaminated with ionic liquid. Moreover, these results have important implications for reactions done in CO2/ionic liquid biphasic mixtures. Copyright © 2002 American Chemical Society.
引用
收藏
页码:10276 / 10277
页数:2
相关论文
共 27 条
[1]  
AKI SNV, 2002, UNPUB CHEM COMMUN
[2]   How polar are room-temperature ionic liquids? [J].
Aki, SNVK ;
Brennecke, JF ;
Samanta, A .
CHEMICAL COMMUNICATIONS, 2001, (05) :413-414
[3]   Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate [J].
Anthony, JL ;
Maginn, EJ ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (29) :7315-7320
[4]   The cybotactic region surrounding fluorescent probes dissolved in 1-butyl-3-methylimidazolium hexafluorophosphate: Effects of temperature and added carbon dioxide [J].
Baker, SN ;
Baker, GA ;
Kane, MA ;
Bright, FV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (39) :9663-9668
[5]   High-pressure phase behavior of ionic liquid/CO2 systems [J].
Blanchard, LA ;
Gu, ZY ;
Brennecke, JF .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (12) :2437-2444
[6]   Recovery of organic products from ionic liquids using supercritical carbon dioxide [J].
Blanchard, LA ;
Brennecke, JF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (01) :287-292
[7]   Green processing using ionic liquids and CO2 [J].
Blanchard, LA ;
Hancu, D ;
Beckman, EJ ;
Brennecke, JF .
NATURE, 1999, 399 (6731) :28-29
[8]  
Bösmann A, 2001, ANGEW CHEM INT EDIT, V40, P2697, DOI 10.1002/1521-3773(20010716)40:14<2697::AID-ANIE2697>3.0.CO
[9]  
2-W
[10]   Ionic liquids: Innovative fluids for chemical processing [J].
Brennecke, JF ;
Maginn, EJ .
AICHE JOURNAL, 2001, 47 (11) :2384-2389