On the number of bouncing ball modes in billiards

被引:55
作者
Backer, A [1 ]
Schubert, R [1 ]
Stifter, P [1 ]
机构
[1] UNIV ULM,ABT QUANTENPHYS,D-89069 ULM,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 19期
关键词
D O I
10.1088/0305-4470/30/19/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the number of bouncing ball modes N-bb(E) in a class of two-dimensional quantized billiards with two parallel walls. Using an adiabatic approximation we show that asymptotically N-bb(E) similar to alpha E delta for E --> infinity, where delta is an element of] 1/2,[ depends on the shape of the billiard boundary. In particular for the class of two-dimensional Sinai billiards, which are chaotic, one can get arbitrarily close (from below) to delta = 1, which corresponds to the leading term in Weyl's law for the mean behaviour of the counting function of eigenstates. This result shows that one can come arbitrarily close to violating quantum ergodicity. We compare the theoretical results with the numerically determined counting function N-bb(E)for the stadium billiard and the cosine billiard and find good agreement.
引用
收藏
页码:6783 / 6795
页数:13
相关论文
共 26 条
[1]   STATISTICAL PROPERTIES OF HIGHLY EXCITED QUANTUM EIGENSTATES OF A STRONGLY CHAOTIC SYSTEM [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1993, 64 (1-3) :185-214
[2]   BORN-OPPENHEIMER ADIABATIC MECHANISM FOR REGULARITY OF STATES IN THE QUANTUM STADIUM BILLIARD [J].
BAI, YY ;
HOSE, G ;
STEFANSKI, K ;
TAYLOR, HS .
PHYSICAL REVIEW A, 1985, 31 (05) :2821-2826
[3]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[4]  
Bunimovich L.A., 1974, FUNCT ANAL APPL+, V8, P254, DOI [10.1007/BF01075700, DOI 10.1007/BF010757000303.28018]
[5]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[6]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P111
[7]   ERGODIC PROPERTIES OF EIGENFUNCTIONS FOR THE DIRICHLET PROBLEM [J].
GERARD, P ;
LEICHTNAM, E .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (02) :559-607
[8]   DISTRIBUTION OF EIGENMODES IN A SUPERCONDUCTING STADIUM BILLIARD WITH CHAOTIC DYNAMICS [J].
GRAF, HD ;
HARNEY, HL ;
LENGELER, H ;
LEWENKOPF, CH ;
RANGACHARYULU, C ;
RICHTER, A ;
SCHARDT, P ;
WEIDENMULLER, HA .
PHYSICAL REVIEW LETTERS, 1992, 69 (09) :1296-1299
[9]  
Gutzwiller MC, 1990, CHAOS CLASSICAL QUAN
[10]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518