Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images

被引:89
作者
Gong, Kuang [1 ,2 ]
Yang, Jaewon [3 ]
Kim, Kyungsang [1 ]
El Fakhri, Georges [1 ]
Seo, Youngho [3 ]
Li, Quanzheng [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Gordon Ctr Med Imaging, Boston, MA 02114 USA
[2] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[3] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, Phys Res Lab, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
attenuation correction; Dixon and ZTE MR; deep neural network; brain PET imaging; PET/MR; ZERO-ECHO-TIME; CT IMAGES; PET/MRI; RECONSTRUCTION; SEGMENTATION; GENERATION; SINOGRAM;
D O I
10.1088/1361-6560/aac763
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron emission tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as magnetic resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior to other Dixon-based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Application and Evaluation of a Measured Spatially Variant System Model for PET Image Reconstruction [J].
Alessio, Adam M. ;
Stearns, Charles W. ;
Tong, Shan ;
Ross, Steven G. ;
Kohlmyer, Steve ;
Ganin, Alex ;
Kinahan, Paul E. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) :938-949
[2]  
[Anonymous], 2016, ARXIV161009736
[3]  
[Anonymous], 2015, P INT C MACHINE LEAR
[4]  
[Anonymous], 2017, ARXIV171003344
[5]  
Avants BB., 2009, Insight J., V2, P1, DOI 10.54294/uvnhin
[6]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804
[7]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[8]   Method for transforming CT images for attenuation correction in PET/CT imaging [J].
Carney, JPJ ;
Townsend, DW ;
Rappoport, V ;
Bendriem, B .
MEDICAL PHYSICS, 2006, 33 (04) :976-983
[9]   MRI-Assisted PET Motion Correction for Neurologic Studies in an Integrated MR-PET Scanner [J].
Catana, Ciprian ;
Benner, Thomas ;
van der Kouwe, Andre ;
Byars, Larry ;
Hamm, Michael ;
Chonde, Daniel B. ;
Michel, Christian J. ;
El Fakhri, Georges ;
Schmand, Matthias ;
Sorensen, Gregory .
JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (01) :154-161
[10]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694