Analytical solutions to multivalued maps

被引:18
作者
Gonzalez, JA [1 ]
deCarvalho, LB [1 ]
机构
[1] INST VENEZOLANO INVEST CIENT,CTR FIS,CARACAS 1020A,VENEZUELA
来源
MODERN PHYSICS LETTERS B | 1997年 / 11卷 / 12期
关键词
D O I
10.1142/S0217984997000633
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present explicit solutions for a class of chaotic maps. The return-maps generated by a special class of chaotic functions can be multivalued, or even they can represent an erratic set of points. In some cases the produced time series can have an increasing time-dependent maximum Lyapunov exponent. We discuss some applications of the obtained results. In particular, we present a chaotic lattice model for the investigation of the propagation of carriers in the presence of disorder.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 36 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[3]  
ANDERSON PW, 1988, SANTA FE I STUDIES S, V5
[4]  
Arnold V. I., 2013, Mathematical Methods of Classical Mechanics, V60
[5]  
BARNSLEY MF, 1986, CHAOTIC DYNAMICS FRA
[6]  
Berge P., 1984, Order within chaos, Vfirst
[7]  
Bhattacharjee J. K., 1987, CONVECTION CHAOS FLU
[8]  
CASDAGLI M, 1992, APPL CHAOS
[9]  
COLLET P, 1980, ITERATED MAPS INTERV
[10]  
COURANT R, 1953, METHODS MATH PHYSICS