Total least squares fitting of Bezier and B-spline curves to ordered data

被引:45
作者
Borges, CF [1 ]
Pastva, T [1 ]
机构
[1] USN, Postgrad Sch, Monterey, CA 93943 USA
关键词
data fitting; total least-squares; B-splines;
D O I
10.1016/S0167-8396(02)00088-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We begin by considering the problem of fitting a single Bezier curve segment to a set of ordered data so that the error is minimized in the total least squares sense. We develop an algorithm for applying the Gauss-Newton method to this problem with a direct method for evaluating the Jacobian based on implicitly differentiating a pseudo-inverse. We then demonstrate the simple extension of this algorithm to B-spline curves. We present some experimental results for both cases. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:275 / 289
页数:15
相关论文
共 8 条
[1]  
[Anonymous], 1996, CURVES SURFACES COMP
[2]  
[Anonymous], 1971, GEN INVERSES MATRICE
[3]  
Foley T. A., 1989, Mathematical Methods in Computer Aided Geometric Design, P261
[4]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[5]   DIFFERENTIATION OF PSEUDO-INVERSES AND NONLINEAR LEAST-SQUARES PROBLEMS WHOSE VARIABLES SEPARATE [J].
GOLUB, GH ;
PEREYRA, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) :413-432
[6]  
HANSON RJ, 1969, MATH COMPUT, V23, P787
[7]  
MARIN SP, 1994, COMPUT AIDED GEOM D, V11, P247, DOI 10.1016/0167-8396(94)90002-7
[8]  
Nielson G.M., 1987, TOPICS MULTIVARIATE, P175