A random set description of a possibility measure and its natural extension

被引:27
作者
de Cooman, G [1 ]
Aeyels, D [1 ]
机构
[1] State Univ Ghent, Syst Res Grp, B-9052 Zwijnaarde, Belgium
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS | 2000年 / 30卷 / 02期
关键词
coherence; natural extension; possibility measure; random sets; upper prevision; upper probability;
D O I
10.1109/3468.833093
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The relationship is studied between possibility and necessity measures defined on arbitrary spaces, the theory of imprecise probabilities, and elementary random set theory. It is shown how special random sets can be used to generate normal possibility and necessity measures, as well as their natural extensions. This leads to interesting alternative formulas for the calculation of these natural extensions.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 30 条
[1]  
[Anonymous], RANDOM SETS INTEGRAL
[2]  
[Anonymous], 1988, POSSIBILITY THEORY
[3]  
[Anonymous], 1985, THEORIE POSSIBILITES
[4]  
APOSTOL TM, 1975, MATH ANAL
[5]  
Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
[6]   SINGLE VALUE SIMULATION OF FUZZY VARIABLE [J].
CHANAS, S ;
NOWAKOWSKI, M .
FUZZY SETS AND SYSTEMS, 1988, 25 (01) :43-57
[7]  
Davey B., 1990, INTRO LATTICES ORDER
[8]   Supremum preserving upper probabilities [J].
de Cooman, G ;
Aeyels, D .
INFORMATION SCIENCES, 1999, 118 (1-4) :173-212
[9]  
de Finetti B., 1974, THEORY PROBABILITY, V1-2, DOI [10.1090/S0002-9904-1977-14188-8 PII, DOI 10.1090/S0002-9904-1977-14188-8PII]
[10]   Possibility theory .2. Conditional possibility [J].
DeCooman, G .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1997, 25 (04) :325-351