Optimized Molecular Dynamics Force Fields Applied to the Helix-Coil Transition of Polypeptides

被引:670
作者
Best, Robert B. [1 ]
Hummer, Gerhard [2 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
ALANINE-BASED PEPTIDES; QUANTUM-MECHANICAL CALCULATIONS; VARYING CHAIN LENGTHS; FOLDING SPEED LIMIT; ALPHA-HELIX; DIPOLAR COUPLINGS; BIOLOGICAL MOLECULES; POTENTIAL FUNCTIONS; CIRCULAR-DICHROISM; SPIN RELAXATION;
D O I
10.1021/jp901540t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Obtaining the correct balance of secondary structure propensities is a central priority in protein force-field development. Given that current force fields differ significantly in their alpha-helical propensities, a correction to match experimental results would be highly desirable. We have determined simple backbone energy corrections for two force fields to reproduce the fraction of helix measured in short peptides at 300 K. As validation, we show that the optimized force fields produce results in excellent agreement with nuclear magnetic resonance experiments for folded proteins and short peptides not used in the optimization. However. despite the agreement at ambient conditions, the dependence of the helix content on temperature is too weak, a problem shared with other force fields. A fit of the Lifson-Roig helix-coil theory shows that both the enthalpy and entropy of helix formation are too small: the helix extension parameter w agrees well with experiment, but its entropic and enthalpic components are both only about half the respective experimental estimates. Our structural and thermodynamic analyses point toward the physical origins of these shortcomings in current force fields, and suggest ways to address them in future force-field development.
引用
收藏
页码:9004 / 9015
页数:12
相关论文
共 89 条
[1]  
[Anonymous], J APPL PHYS
[2]   Dipolar couplings in macromolecular structure determination [J].
Bax, A ;
Kontaxis, G ;
Tjandra, N .
NUCLEAR MAGNETIC RESONANCE OF BIOLOGICAL MACROMOLECULES, PT B, 2001, 339 :127-174
[3]   Accurate ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields [J].
Beachy, MD ;
Chasman, D ;
Murphy, RB ;
Halgren, TA ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (25) :5908-5920
[4]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[5]   Are Current Molecular Dynamics Force Fields too Helical? (vol 95, pg L07, 2008) [J].
Best, Robert B. ;
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
BIOPHYSICAL JOURNAL, 2008, 95 (09) :4494-4494
[6]   Are current molecular dynamics force fields too helical? [J].
Best, Robert B. ;
Buchete, Nicolae-Viorel ;
Hummer, Gerhard .
BIOPHYSICAL JOURNAL, 2008, 95 (01) :L7-L9
[7]   Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme [J].
Buck, M ;
Bouguet-Bonnet, S ;
Pastor, RW ;
MacKerell, AD .
BIOPHYSICAL JOURNAL, 2006, 90 (04) :L36-L38
[8]   Static and dynamic effects on vicinal scalar J couplings in proteins and peptides:: A MD/DFT analysis [J].
Case, DA ;
Scheurer, C ;
Brüschweiler, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (42) :10390-10397
[9]   Spin relaxation enhancement confirms dominance of extended conformations in short alanine peptides [J].
Chen, Kang ;
Liu, Zhigang ;
Zhou, Chunhui ;
Bracken, W. Clay ;
Kallenbach, Neville R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (47) :9036-9039
[10]   Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: Aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases [J].
Cieplak, P ;
Caldwell, J ;
Kollman, P .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2001, 22 (10) :1048-1057