Steady-state levels of histone acetylation in Saccharomyces cerevisiae

被引:75
作者
Waterborg, JH [1 ]
机构
[1] Univ Missouri, Sch Biol Sci, Div Cell Biol & Biophys, Kansas City, MO 64110 USA
关键词
D O I
10.1074/jbc.275.17.13007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The importance of control of the levels of histone acetylation for the control of gene expression in eukaryotic chromatin is being elucidated, and the yeast Saccharomyces cerevisiae has proven to be an important model system. The level of histone acetylation in yeast is the highest known. However, only acetylation of H4 has been quantified, and reports reveal loss of acetylation in histone preparations. A chaotropic guanidine-based method for histone isolation from intact wild-type cells or from a single-step nuclear preparation with butyrate preserves acetylation of all core histones. Histone H4 has an average of more than 2 acetylated lysines per molecule, distributed over 4 sites. Histones H2A, H3, and H2B have 0.2, similar to 2, and >2 acetylated lysines per molecule, respectively, distributed across 2, 5, and 6 sites. Thus, yeast nucleosomes carry, on average, 13 acetylated lysines per octamer, i.e. just above the threshold of 10-12 deduced for transcriptionally activated chromatin of animals, plants, and algae. Following M-r 100,000 ultrafiltration in 2.5% acetic acid, yeast histone H3 was purified to homogeneity by reversed-phase high pressure liquid chromatography. Other core histones were obtained at 80-95% purity.
引用
收藏
页码:13007 / 13011
页数:5
相关论文
共 49 条
[1]   A NOVEL YEAST HISTONE DEACETYLASE - PARTIAL CHARACTERIZATION AND DEVELOPMENT OF AN ACTIVITY ASSAY [J].
ALONSO, WR ;
NELSON, DA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 866 (2-3) :161-169
[2]   Histone H4 acetylation in plant heterochromatin is altered during the cell cycle [J].
Belyaev, ND ;
Houben, A ;
Baranczewski, P ;
Schubert, I .
CHROMOSOMA, 1997, 106 (03) :193-197
[3]  
Braunstein M, 1996, MOL CELL BIOL, V16, P4349
[4]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[5]   Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity [J].
Carmen, AA ;
Griffin, PR ;
Calaycay, JR ;
Rundlett, SE ;
Suka, Y ;
Grunstein, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12356-12361
[6]   Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae [J].
Casal, M ;
Cardoso, H ;
Leao, C .
MICROBIOLOGY-UK, 1996, 142 :1385-1390
[7]   Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase [J].
Chen, WY ;
Bailey, EC ;
McCune, SL ;
Dong, JY ;
Townes, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5798-5803
[8]  
Clarke AS, 1999, MOL CELL BIOL, V19, P2515
[9]   Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells [J].
Coffee, B ;
Zhang, FP ;
Warren, ST ;
Reines, D .
NATURE GENETICS, 1999, 22 (01) :98-101
[10]   HISTONE MODIFICATIONS IN THE YEAST S-CEREVISIAE [J].
DAVIE, JR ;
SAUNDERS, CA ;
WALSH, JM ;
WEBER, SC .
NUCLEIC ACIDS RESEARCH, 1981, 9 (13) :3205-3216