Graph embedding and extensions: A general framework for dimensionality reduction

被引:2384
作者
Yan, Shuicheng
Xu, Dong
Zhang, Benyu
Zhang, Hong-Jiang
Yang, Qiang
Lin, Stephen
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] Microsoft Res Asia, Beijing 100080, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
关键词
dimensionality reduction; manifold learning; subspace learning; graph embedding framework;
D O I
10.1109/TPAMI.2007.250598
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the past few decades, a large family of algorithms-supervised or unsupervised; stemming from statistics or geometry theory-has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1997, AM MATH SOC
[2]  
[Anonymous], 1991, INTRO STAT PATTERN R
[3]  
[Anonymous], ADV NEURAL INFORM PR
[4]  
Batur AU, 2001, PROC CVPR IEEE, P296
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[7]  
BRAND M, 2003, 200321 MITS EL RES L
[8]  
Fu Y., 2005, LOCALLY LINEAR EMBED
[9]  
Ham J., 2004, P 21 INT C MACH LEAR, P47, DOI DOI 10.1145/1015330.1015417
[10]  
Hand DavidJ., 1982, KERNEL DISCRIMINANT