Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating, rating cells and mediates repression at Myc binding sites

被引:213
作者
Hurlin, PJ [1 ]
Queva, C [1 ]
Eisenman, RN [1 ]
机构
[1] FRED HUTCHINSON CANC RES CTR, DIV BASIC SCI, SEATTLE, WA 98104 USA
关键词
Max; Myc; Mnt; mSin3; repression; transformation; transgenic mouse;
D O I
10.1101/gad.11.1.44
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The small constitutively expressed bHLHZip protein Max is known to form sequence-specific DNA binding heterodimers with members of both the Myc and Mad families of bHLHZip proteins. Myc:Max complexes activate transcription, promote proliferation, and block terminal differentiation. In contrast, Mad:Max heterodimers act as transcriptional repressors, have an antiproliferative effect, and are induced upon differentiation in a wide variety of cell types. We have identified a novel bHLHZip Max-binding protein, Mnt, which belongs to neither the Myc nor the Mad families and which is coexpressed with Myc in a number of proliferating cell types. Mnt:Max heterodimers act as transcriptional repressors and efficiently suppress Myc-dependent activation from a promoter containing proximal CACGTG sites. Transcription repression by Mnt maps to a 13-amino-acid amino-terminal region related to the Sin3 interaction domain (SID) of Mad proteins. We show that this region of Mnt mediates interaction with mSin3 corepressor proteins and that its deletion converts Mnt from a repressor to an activator. Furthermore, wild-type Mnt suppresses Myc+Ras cotransformation of primary cells, whereas Mnt containing a SLD deletion cooperates with Ras in the absence of Myc to transform cells. This suggests that Mnt and Myc regulate an overlapping set of target genes in vivo. When mnt is expressed as a transgene under control of the p-actin promoter in mice the transgenic embryos exhibit a delay in development and die during mid-gestation, when c- and N-Myc functions are critical. We propose that Mnt:Max:Sin3 complexes normally function to restrict Myc:Max activities associated with cell proliferation.
引用
收藏
页码:44 / 58
页数:15
相关论文
共 73 条
  • [1] MYC-MAX-MAD - A TRANSCRIPTION FACTOR NETWORK CONTROLLING CELL-CYCLE PROGRESSION, DIFFERENTIATION AND DEATH
    AMATI, B
    LAND, H
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1994, 4 (01) : 102 - 108
  • [2] THE C-MYC PROTEIN INDUCES CELL-CYCLE PROGRESSION AND APOPTOSIS THROUGH DIMERIZATION WITH MAX
    AMATI, B
    LITTLEWOOD, TD
    EVAN, GI
    LAND, H
    [J]. EMBO JOURNAL, 1993, 12 (13) : 5083 - 5087
  • [3] ONCOGENIC ACTIVITY OF THE C-MYC PROTEIN REQUIRES DIMERIZATION WITH MAX
    AMATI, B
    BROOKS, MW
    LEVY, N
    LITTLEWOOD, TD
    EVAN, GI
    LAND, H
    [J]. CELL, 1993, 72 (02) : 233 - 245
  • [4] TRANSCRIPTIONAL ACTIVATION BY THE HUMAN C-MYC ONCOPROTEIN IN YEAST REQUIRES INTERACTION WITH MAX
    AMATI, B
    DALTON, S
    BROOKS, MW
    LITTLEWOOD, TD
    EVAN, GI
    LAND, H
    [J]. NATURE, 1992, 359 (6394) : 423 - 426
  • [5] SEQUENCE-SPECIFIC TRANSCRIPTIONAL ACTIVATION BY MYC AND REPRESSION BY MAX
    AMIN, C
    WAGNER, AJ
    HAY, N
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (01) : 383 - 390
  • [6] [Anonymous], 1994, MANIPULATING MOUSE E
  • [7] FUNCTIONAL-ROLE FOR C-MYC IN MITOGENIC RESPONSE TO PLATELET-DERIVED GROWTH-FACTOR
    ARMELIN, HA
    ARMELIN, MCS
    KELLY, K
    STEWART, T
    LEDER, P
    COCHRAN, BH
    STILES, CD
    [J]. NATURE, 1984, 310 (5979) : 655 - 660
  • [8] ASKEW DS, 1991, ONCOGENE, V6, P1915
  • [9] Ayer DE, 1996, MOL CELL BIOL, V16, P5772
  • [10] MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3
    AYER, DE
    LAWRENCE, QA
    EISENMAN, RN
    [J]. CELL, 1995, 80 (05) : 767 - 776