New operators for context adaptation of Mamdani fuzzy systems

被引:2
作者
Botta, Alessio [1 ]
Lazzerini, Beatrice [2 ]
Marcelloni, Francesco [2 ]
机构
[1] IMT, Lucca Inst Adv Studies, Via San Micheletto 3, I-55100 Lucca, Italy
[2] Dipartimento Ingn Informaz, I-56122 Pisa, Italy
来源
APPLIED ARTIFICIAL INTELLIGENCE | 2006年
关键词
D O I
10.1142/9789812774118_0009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we introduce a set of tuning operators that allow us to implement context adaptation of fuzzy rule-based systems while keeping semantics and interpretability. The idea is to achieve context adaptation by starting from a (possibly generic) fuzzy system and adjusting one or more its components, such as membership function shape, fuzzy set support, distribution of membership functions, etc. We make use of a genetic optimization process to appropriately choose the operator parameters. Finally, we show the application of the proposed operators to Mamdani fuzzy systems.
引用
收藏
页码:35 / +
页数:2
相关论文
共 10 条
[1]  
CORDON O, 2001, INFORM SCI, V136
[2]  
DECOCK M, 2000, P IEEE ISMVL
[3]  
DEOLIVEIRA JV, 1999, IEEE T SYSTEMS MAN C, V29
[4]  
GUDWIN R, 1998, INT J INTELL SYSTEMS, V13
[5]  
Gudwin R. R., 1994, P BRAZ JAP JOINT S F
[6]  
HERRERA F, 1998, ARTIFICIAL INTELL RE, V12
[7]  
MAGDALENA L, 1997, INT J APPROXIMATE RE, V17
[8]  
MURPHY KM, 1992, QUART J EC, V107, P1
[9]  
PEDRYCZ W, 1997, FUZZY SETS SYSTEMS, V88
[10]  
SHI H, 2001, IFSA WORLD C 20 NAFI