Explicit sub-optimal linear quadratic regulation with state and input constraints

被引:65
作者
Johansen, TA [1 ]
Petersen, I
Slupphaug, O
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
[2] SINTEF Elect & Cybernet, N-7465 Trondheim, Norway
[3] ABB Ind, Oslo, Norway
关键词
constrained control; optimal control; linear systems;
D O I
10.1016/S0005-1098(02)00004-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal feedback solutions to the infinite horizon LQR problem with state and input constraints based on receding horizon real-time quadratic programming are well known. In this paper we develop an explicit solution to the same problem, eliminating the need for real-time optimization. It is shown that the resulting feedback controller is piecewise linear. This explicit functional structure is exploited for efficient real-time implementation. A suboptimal strategy, based on a suboptimal choice of a finite horizon and imposing additional limitations on the allowed switching between active constraint sets on the horizon, is suggested in order to address the computer memory and processing capacity requirements of the explicit solution. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:1099 / 1111
页数:13
相关论文
共 20 条
[1]  
[Anonymous], P IEEE EUR CONTR C D
[2]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[3]  
Bemporad A, 2000, P AMER CONTR CONF, P872, DOI 10.1109/ACC.2000.876624
[4]   Convexity recognition of the union of polyhedra [J].
Bemporad, A ;
Fukuda, K ;
Torrisi, FD .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (03) :141-154
[5]   Fast algorithm for a constrained infinite horizon LQ problem [J].
Chisci, L ;
Zappa, G .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (11) :1020-1026
[6]   On constrained infinite-time linear quadratic optimal control [J].
Chmielewski, D ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 1996, 29 (03) :121-129
[7]  
HEDLUND S, 1999, PWLTOOL A MATLAB TOO
[8]  
JOHANSEN TA, 2000, STF72A00303 SINTEF
[9]  
JOHANSEN TA, 2000, P IEEE C DEC CONTR S
[10]   Computation of piecewise quadratic Lyapunov functions for hybrid systems [J].
Johansson, M ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :555-559