The diversity of steady state solutions of the complex Ginzburg-Landau equation

被引:2
作者
Bazhenov, M
Bohr, T
Gorshkov, K
Rabinovich, M
机构
[1] NIELS BOHR INST,CTR CHAOS & TURBULENCE STUDIES,DK-2100 COPENHAGEN,DENMARK
[2] UNIV CALIF SAN DIEGO,INST NONLINEAR SCI,LA JOLLA,CA 92093
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/0375-9601(96)00328-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The structure of the phase space of stationary and quasi-stationary (i.e., uniformly translating) solutions of 1D CGLE is investigated by methods of the qualitative theory of ordinary differential equations. The Nozaki-Bekki holes are seen as heteroclinic connections which are made structurally stable by an involution symmetry in phase space, The existence of a countable set of double-loop heteroclinic trajectories is proved, which corresponds to complex ''shock-hole-shock'' structures both motionless and moving with constant velocity v(0) along the x-axis.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 8 条
[1]  
ARANSON I, 1993, PHYS REV LETT, V70, P3880
[2]   The structure of spiral domain patterns [J].
Bohr, T ;
Huber, G ;
Ott, E .
EUROPHYSICS LETTERS, 1996, 33 (08) :589-594
[3]   STABILITY OF THE BEKKI-NOZAKI HOLE SOLUTIONS TO THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICS LETTERS A, 1992, 171 (3-4) :183-188
[4]  
HIROTA R, 1980, TOPICS CURRENT PHYSI, V17
[5]   EXACT-SOLUTIONS OF THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
NOZAKI, K ;
BEKKI, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (05) :1581-1582
[6]  
NOZAKI K, 1985, PHYS LETT A, V110, P133
[7]  
POPP S, 1995, PHYSICA D, V84, P397
[8]  
SAARLOOS W, 1992, PHYSICA D, V56, P303